Équations de Maxwell - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Invariance de jauge de la théorie

L'analyse vectorielle montre que la divergence d'un rotationnel est toujours identiquement nulle :

\mathrm{div} \ \overrightarrow{ \mathrm{rot}} \ = \ 0

L'équation locale de conservation du flux magnétique permet donc de définir au moins localement un potentiel-vecteur \overrightarrow{A}\, tel que :

\overrightarrow{B} \ = \ \overrightarrow{\mathrm{rot}} \ \overrightarrow{A}

L'analyse vectorielle nous dit également que

\overrightarrow{ \mathrm{rot}} \ \overrightarrow{ \mathrm{grad}} \ \ = \ \vec{0}

Alors le potentiel-vecteur n'est pas défini de manière unique puisque la transformation suivante, avec f\, une fonction quelconque

 \overrightarrow{A} \rightarrow \overrightarrow{A}+ \overrightarrow \nabla f

ne modifie par la valeur du champ \overrightarrow{B}\, . Ceci est un exemple de transformation de jauge. Il faut donc imposer des conditions supplémentaires pour déterminer \overrightarrow{A}\, de façon non-ambigüe. On appelle cela des conditions de jauge, par exemple la jauge de Coulomb ou encore la jauge de Lorenz.

Le lecteur notera qu'en physique classique, le potentiel-vecteur semble n'être qu'un outil mathématique commode pour analyser les solutions des équations de Maxwell, mais ne semble pas être une grandeur physique directement mesurable. En 1959, dans le cadre de la physique quantique, Aharonov et Bohm ont démontré que le potentiel-vecteur avait un effet observable en mécanique quantique : c'est l'effet Aharonov-Bohm.

L'analyse vectorielle montre que le rotationnel d'un gradient est toujours identiquement nul :

\overrightarrow{ \mathrm{rot}} \ \overrightarrow{ \mathrm{grad}} \ \ = \ \vec{0}

L'équation de Maxwell-Faraday couplée à l'existence locale d'un potentiel-vecteur \vec{A}\, permettent de définir (au moins localement) le potentiel électrique V\, (scalaire) tel que :

\overrightarrow{E} \ = \ - \ \overrightarrow{\mathrm{grad}} \ V \ - \ \frac{\partial \overrightarrow{A}}{\partial t}

Le potentiel V\, lui non plus n'est pas défini de façon unique mais la transformation de jauge associée est liée à celle de \overrightarrow{A}\, est la suivante (on rappelle celle de \overrightarrow{A}\, par souci de clarté) et on a

 \left\{ \begin{matrix} V & \rightarrow & V - \partial_t f \\ \overrightarrow{A} & \rightarrow & \overrightarrow{A} + \overrightarrow{\nabla} f \end{matrix}\right. \,

Ces deux équations donnent l'invariance de jauge complète des équations de Maxwell.

Formulation covariante

NB Cette partie suit les conventions de signe classiques de MTW

Cette partie adopte également la convention de sommation d'Einstein.

Géométrie de l'espace-temps de Minkowski

L'espace-temps de Minkowski (1908) est une variété différentielle M plate munie d'une métrique lorentzienne.

Soit un système de coordonnées quelconque xμ autour d'un évènement (point) P de l'espace-temps, et soient {\mathbf e}_{\mu}(x) une base locale de TxM, espace tangent à la variété au point x \in M . Un vecteur tangent \mathbf w \in T_xM s'écrit alors comme la combinaison linéaire :

 \mathbf{w} \ = \ w^{\mu} \  \mathbf{e}_{\mu}

Les wμ sont appelée les composantes contravariantes du vecteur w. Le tenseur métrique \mathbf \eta est la forme bilinéaire symétrique :

\mathbf \eta \ = \ \eta_{\mu \nu} \ dx^{\mu} \ \otimes \ d x^{\nu}

Dans une base orthonormée d'un référentiel inertiel, ses composantes covariantes ημν sont :

\eta_{\mu \nu} \ = \ \mathrm{diag} \ ( -, \, +, \, +, \, + \, )

Ses composantes contravariantes ημν vérifient :

\eta_{\mu \alpha} \ \eta^{\alpha \nu} \ = \ \delta_{\mu}^\nu

On obtient explicitement :

\eta^{\mu \nu} \ = \ \mathrm{diag} \ ( -, \, +, \, +, \, + \, )

On utilisera ci-dessous les conventions usuelles suivantes :

  • un indice grec varie de 0 à 3. Il est associé à une grandeur dans l'espace-temps.
  • un indice latin varie de 1 à 3. Il est associé aux composantes spatiales d'une grandeur dans l'espace-temps.

Par exemple, les composantes contravariantes du 4-vecteur position s'écrivent dans un système de coordonnées orthonormales :

 x^{\mu} \ = \  \left( \begin{matrix} x^{0} \\ x^{i} \end{matrix} \right) \ = \  \left( \begin{matrix} x^{0} \\ x^{1} \\ x^{2} \\                   x^{3} \end{matrix} \right) \ = \  \left( \begin{matrix}                   c t \\ x \\ y \\ z  \end{matrix} \right)

Le tenseur métrique définit pour chaque point x \in M de l'espace-temps un pseudo-produit scalaire (pseudo au sens où l'hypothèse de positivité est retirée) dans l'espace TxM euclidien tangent à M au point x. Si \mathbf u et \mathbf v sont deux vecteurs de TxM, leur produit scalaire s'écrit :

\mathbf u \cdot \mathbf v \ = \ \mathbf \eta (\mathbf u, \mathbf v) \ = \ \eta_{\mu \nu} \ u^{\mu} \ v^{\nu}

En particulier, en prenant deux vecteurs de base, on obtient les composantes :

\eta_{\mu \nu} \ = \ \mathbf \eta ({\mathbf e}_{\mu}, {\mathbf e}_{\nu}) \ = \ {\mathbf e}_{\mu} \cdot {\mathbf e}_{\nu}

wμ désignant les composantes contravariantes du vecteur w, on peut définir de même ses composantes covariantes par :

 w_{\mu} \ = \ \mathbf w \ \cdot \mathbf e_{\mu}

Par exemple, les composantes covariantes du 4-vecteur position s'écrivent dans un système de coordonnées orthonormales :

 x_{\mu} \ = \  \left( \begin{matrix} x_{0} \\ x_{i} \end{matrix} \right) \ = \  \left( \begin{matrix} x_{0} \\ x_{1} \\ x_{2} \\                   x_{3} \end{matrix} \right) \ = \  \left( \begin{matrix}                   - \ c  t \\ x \\  y \\ z  \end{matrix} \right)

Quadri-gradient

On introduit l'opérateur différentiel quadri-gradient par ses composantes covariantes :

 \partial_{\mu} \ = \  \left( \begin{matrix} \partial_{0} \\ \partial_{i} \end{matrix} \right) \ = \  \left( \begin{matrix} 1/c \ \partial_t \\ \vec{\nabla} \end{matrix} \right)

Ses composantes contravariantes s'écrivent :

 \partial^{\mu} \ = \  \left( \begin{matrix} \partial^{0} \\ \partial^{i} \end{matrix} \right) \ = \  \left( \begin{matrix} - \ 1/c \ \partial_t  \\ \vec{\nabla} \end{matrix} \right)

L'opérateur invariant d'Alembertien s'écrit par exemple :

 \Box \ = \ \partial^{\mu} \partial_{\mu} \ = \  - \ \frac{1}{c^2} \ \partial_t^2 \ + \ \vec{\nabla}^2

Quadri-potentiel

On introduit le quadri-potentiel électromagnétique par ses composantes contravariantes :

 A^{\mu} \ = \  \left( \begin{matrix} A^{0} \\ A^{i} \end{matrix} \right) \ = \  \left( \begin{matrix} \ V/c \\ \vec{A} \end{matrix} \right)

V est le scalaire potentiel électrique, et \vec{A} le potentiel-vecteur magnétique. Ses composantes covariantes s'écrivent :

 A_{\mu} \ = \  \left( \begin{matrix} A_{0} \\ A_{i} \end{matrix} \right) \ = \  \left( \begin{matrix} - \ V/c \\ \vec{A} \end{matrix} \right)

Les lois de transformation de jauge écrite précédemment sont donc résumées dans cette notation sous la forme

 A^\mu\rightarrow A^\mu + \partial^\mu f  \,

La condition de jauge de Lorenz s'écrit par exemple de façon covariante :

 \partial_{\mu} A^{\mu} \ = \  \frac{1}{c^2} \ \frac{\partial V}{\partial t} \ + \ \vec{\nabla} \cdot \vec{A} \ = \ 0

Quadri-courant

On introduit le quadri-courant électromagnétique par ses composantes contravariantes :

 j^{\mu} \ = \  \left( \begin{matrix} j^{0} \\ j^{i} \end{matrix} \right) \ = \  \left( \begin{matrix} \rho c \\ \vec{j} \end{matrix} \right)

ρ est le scalaire densité électrique de charge, et \vec{j} le vecteur densité de courant. Ses composantes covariantes s'écrivent :

 j_{\mu} \ = \  \left( \begin{matrix} j_{0} \\ j_{i} \end{matrix} \right) \ = \  \left( \begin{matrix} - \ \rho c \\ \vec{j} \end{matrix} \right)

Tenseur de Maxwell

Le tenseur électromagnétique est le tenseur anti-symétrique de rang deux défini à partir du quadri-potentiel par :

 F_{\alpha\beta} \ = \ \partial_{\alpha} A_{\beta} - \partial_{\beta} A_{\alpha} \ = \ - \  F_{\beta\alpha}

Ses composantes covariantes s'écrivent explicitement :

   F_{\alpha\beta}  \ = \ \begin{pmatrix}         0 & - \ \frac{E_x}{c} & - \ \frac{E_y}{c} & - \ \frac{E_z}{c} \\         \frac{E_x}{c} &  0   & B_z & - \ B_y \\         \frac{E_y}{c} & - \ B_z &  0   & B_x \\         \frac{E_z}{c} & B_y &  - \ B_x & 0    \\       \end{pmatrix}

On obtient ses composantes contravariantes en écrivant :

   F^{\alpha\beta}  \ = \  \eta^{\alpha \mu} \ \eta^{\beta \nu} \ F_{\mu\nu}

La métrique étant diagonale dans un référentiel inertiel, on obtient alors les formules suivantes, sans sommation sur les indices répétés :

  • F^{00} \ = \  \eta^{00} \ \eta^{00} \ F_{00} \ = \ + \ F_{00} \ = \ 0
  • F^{0i} \ = \  \eta^{00} \ \eta^{ii} \ F_{0i} \ = \ - \ F_{0i}
  • F^{ij} \ = \  \eta^{ii} \ \eta^{jj} \ F_{ij} \ = \ + \ F_{ij}

soit explicitement :

   F^{\alpha\beta}  \ = \  \eta^{\alpha \mu} \ \eta^{\beta \nu} \ F_{\mu\nu} \ = \ \begin{pmatrix}         0 & \frac{E_x}{c} & \frac{E_y}{c} & \frac{E_z}{c} \\       - \  \frac{E_x}{c} &  0   & B_z &  - \ B_y \\       - \  \frac{E_y}{c} &  - \ B_z &  0   & B_x \\       - \  \frac{E_z}{c} & B_y &  - \ B_x & 0    \\       \end{pmatrix}

Équations de Maxwell sous forme covariante

Les équations de Maxwell se mettent sous forme relativiste covariante.

  • Les deux équations de Maxwell sans termes de sources s'écrivent :
\partial_{\alpha}F_{\beta\gamma} \ + \ \partial_{\beta}F_{\gamma\alpha} \ + \ \partial_{\gamma}F_{\alpha\beta} \ = \ 0
  • Les deux équations de Maxwell avec termes de sources s'écrivent :
\partial_{\alpha}F^{\alpha\beta} \ = \ - \ \mu_{0} \ j^{\beta}

Puisque le tenseur de Maxwell est anti-symétrique, cette dernière relation entraîne en particulier que le quadri-courant est conservé :

\partial_{\beta} \left(\partial_{\alpha}F^{\alpha\beta}\right) \ = \ 0 \ = \ - \ \mu_{0} \ \partial_{\beta} j^{\beta} \quad \Longrightarrow \quad \partial_{\beta} j^{\beta} \ = \ 0

Équation de propagation pour le quadri-potentiel en jauge de Lorenz

En écrivant explicitement le tenseur de Maxwell en termes du quadri-potentiel dans l'équation covariante avec terme de sources, on obtient pour le membre de gauche :

\partial_{\alpha} F^{\alpha\beta} \ = \ \partial_{\alpha} \left( \, \partial^{\alpha} A^{\beta} - \partial^{\beta} A^{\alpha}  \, \right) \ = \ \Box A^{\beta} \ - \ \partial^{\beta} \left( \, \partial_{\alpha} A^{\alpha} \, \right)

Dans la jauge de Lorenz \partial_{\alpha} A^{\alpha} = 0 , le second terme disparaît, et l'équation de Maxwell avec terme de sources se réduit à une équation de propagation pour le quadri-potentiel :

 \Box A^{\mu}(x) \ = \ - \ \mu_{0} \ j^{\mu}(x)

La solution de cette équation s'écrit de façon simple si l'on connaît une fonction de Green de l'équation de propagation, c'est-à-dire une fonction G(x) solution de l'équation aux dérivées partielles :

 \Box \, G(x) \ = \ \delta(x)

δ(x) est la distribution de Dirac. On obtient alors le quadri-potentiel sous la forme d'un produit de convolution :

 A^{\mu}(x) \ = \ - \ \mu_{0} \ \left( G \star j^{\mu} \right) (x) \ = \ - \ \mu_{0} \ \int G (x-y) \ j^{\mu} (y) \ dy

Exemple : les potentiels retardés

En électrodynamique classique, on utilise le plus souvent la fonction de Green retardée qui satisfait à l'hypothèse de causalité :

 G(x) \ = \ G(\vec{r},t) \ = \ 0 \quad \mbox{ lorsque } \ t \ < \ 0
Page générée en 0.146 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise