Inégalité de Cauchy-Schwarz - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

En mathématiques, l'inégalité de Cauchy-Schwarz, aussi appelée inégalité de Schwarz, ou encore inégalité de Cauchy-Bunyakovski-Schwarz, se rencontre dans de nombreux domaines tels que l'algèbre linéaire, l'analyse avec les séries et en intégration.

Cette inégalité s'applique dans le cas d'un espace vectoriel sur le corps des nombres réels ou complexes muni d'un produit scalaire. Dans le cas complexe, le produit scalaire désigne une forme hermitienne définie positive. Son contexte général est donc celui d'un espace préhilbertien.

Cette inégalité possède de nombreuses applications, comme le fait d'établir l'inégalité triangulaire montrant que la racine carrée de la forme quadratique associée au produit scalaire est une norme, ou encore que le produit scalaire est continu. Elle fournit des justifications ou des éclairages dans des théories où le contexte préhilbertien n'est pas central.

Elle doit son nom à Hermann Amandus Schwarz et à Augustin Louis Cauchy.

Énoncé

Le théorème s'énonce couramment de la façon suivante :

Théorème 1 — Soit (E,\langle \cdot,\cdot\rangle) un espace préhilbertien réel ou complexe. Alors, pour tous vecteurs x et y de E,

 |\langle x,y\rangle|\leqslant \|x\|\ \|y\|.

De plus, les deux membres sont égaux si et seulement si x et y sont linéairement dépendants.

Conséquences et applications

Conséquences

L'inégalité de Cauchy-Schwarz a des applications importantes. Elle permet notamment de montrer que l'application x\mapsto\sqrt{\langle x,x\rangle} est une norme car elle vérifie l'inégalité triangulaire. Une conséquence est que le produit scalaire est une fonction continue pour la topologie induite par cette norme.

Elle permet également de définir l'angle non orienté entre deux vecteurs non nuls d'un espace préhilbertien réel, par la formule :

\cos\widehat{(x,y)}=\frac{\langle x,y\rangle}{\|x\| \|y\|}.

Dans le cas de l'espace euclidien \quad \mathbb R ^n muni du produit scalaire canonique, l'inégalité de Cauchy-Schwarz s'écrit :

\left|\sum_{i=1}^n x_{i}y_{i}\right|\leqslant\left (\sum_{i=1}^n x_{i}^{2}\right)^{1/2}.\left (\sum_{i=1}^n y_{i}^{2}\right)^{1/2}

Dans le cas des fonctions à valeurs complexes de carré intégrable, elle s'écrit

\left|\int f. \overline g\, \right| \leqslant \left( \int  |f|^2\,\right)^{1/2}. \left( \int |g|^2\, \right)^{1/2} .

Cette inégalité est un cas particulier des inégalités de Hölder.

Autres applications

  • L'inégalité de Cauchy-Schwarz est aussi un outil fondamental de l'analyse dans les espaces de Hilbert. Grâce à elle, on peut construire une injection du préhilbert E dans son dual topologique : pour tout vecteur y, la forme linéaire qui à x associe <x,y> est continue, de norme égale à celle de y. Ceci permet d'énoncer le théorème de représentation de Riesz selon lequel si E est un espace de Hilbert alors cette injection est un isomorphisme.
    On la retrouve aussi dans le théorème de Lax-Milgram.
  • Cependant ses applications peuvent sortir du cadre strict de l'analyse dans les espaces de Hilbert. En effet elle se retrouve parmi les ingrédients utiles à l'inégalité de Paley-Zygmund en théorie des probabilités et du traitement du signal.
    En théorie des probabilités toujours, dans l'espace des variables aléatoires admettant un moment d'ordre 2, l'inégalité de Cauchy-Schwarz fournit l'inégalité \mathbb{E}(X Y) \le \sqrt {\mathbb{E}(X^2) \mathbb{E}(Y^2)} , qui compare l'espérance du produit de deux variables aléatoires au produit des espérances de leurs carrés. Elle permet d'établir que le coefficient de corrélation de deux variables aléatoires est un réel compris entre -1 et 1.
  • En optimisation, le cas d'égalité dans l'inégalité de Cauchy-Schwarz appliquée à la dérivée directionnelle permet de justifier que le gradient donne la direction de plus grande pente.
Page générée en 0.350 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise