Polynôme d'endomorphisme - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

En algèbre linéaire, on utilise fréquemment la notion de polynôme d'endomorphisme (ou de matrice), qui est une combinaison linéaire de puissances (au sens de la composition de fonctions) de l'endomorphisme.

Pour un endomorphisme u d'un espace vectoriel E sur \scriptstyle\mathbb K elle donne à E une structure de \scriptstyle\mathbb K[X] -module.

L'application la plus intéressante réside dans la recherche des polynômes annulateurs de l'endomorphisme : les relations caractéristiques des projecteurs (p2 = p), des symétries (s2 = Id) constituent les exemples les plus simples de polynômes annulateurs.

De plus la recherche de polynômes annulateurs permet de déterminer les valeurs propres d'une matrice sans en calculer le polynôme caractéristique, voire de prouver très simplement la diagonalisation.

Intérêt du concept

Si u est l'endomorphisme que nous étudions, on peut l'appliquer deux fois à un vecteur, on note alors u2 l'application associée. En fait, on peut l'appliquer autant de fois qu'on le souhaite. Ceci nous permet d'élever un endomorphisme à une puissance entière. On peut aussi additionner plusieurs endomorphismes et les multiplier par un nombre. En conséquence il est possible d'appliquer un polynôme à un endomorphisme.

Ce concept est archétypal d'une démarche souvent féconde en mathématiques. Elle consiste à établir un pont entre deux théories. Dans cet article le pont est établi entre les polynômes et les applications linéaires. Il est bâti sous la forme d'un morphisme d'algèbre entre les polynômes et les endomorphismes. Il permet alors d'exporter les propriétés de commutativité, des idéaux principaux, d'appliquer l'identité de Bézout ou une interpolation lagrangienne. Par delà l'aspect élégant d'une telle démarche, l'essentiel des théorèmes strictement associés aux applications linéaires se démontre sans trop de dédales calculatoires.

Dans la pratique, cette démarche permet de démontrer l'existence du polynôme minimal et de déterminer la structure des polynômes annulateurs. Elle propose une approche permettant de comprendre l'origine de la notion de vecteur propre généralisé ainsi que de sous-espace caractéristique. Dans le cas où le corps est algébriquement clos, elle permet même de fournir une réduction simple de l'endomorphisme, dite réduction de Jordan. Elle permet alors de comprendre pourquoi le polynôme caractéristique est un multiple du polynôme minimal, et fournit donc une démonstration du théorème de Cayley-Hamilton. Elle est enfin la base d'une famille d'algorithmes souvent largement plus rapides qu'une approche par les déterminants.

Idéaux annulateurs

Le reste de l'article ne considère que le cas où l'espace vectoriel est de dimension finie n.

Un morphisme entre deux structures est un outil puissant. Les propriétés de l'une des structures se trouvent transportées par le morphisme dans son image. Le paragraphe précédent utilise cette propriété pour démontrer le caractère commutatif de l'espace des polynômes d'un endomorphisme particulier. Le noyau d'un morphisme d'algèbre est une sous-algèbre. Cette propriété est un des éléments permettant d'établir la définition et les propositions suivantes :

L'ensemble des polynômes qui annulent un endomorphisme est un idéal principal non réduit à 0; on l'appelle Idéal annulateur. On appelle polynôme annulateur un élément de l'idéal annulateur. Il existe un unique polynôme unitaire qui l'engendre; il est appelé polynôme minimal.

Un idéal est un sous-groupe additif stable par multiplication par tout élément de l'anneau.

Soit x un vecteur de E et u un endomorphisme, alors l'ensemble des polynômes de u qui annulent x est un idéal principal contenant l'idéal annulateur. On l'appelle idéal annulateur de x. Il existe un unique polynôme unitaire qui l'engendre; il est appelé polynôme minimal de x.

Il est possible de remarquer que l'idéal annulateur, qui annule tout vecteur, annule aussi x. L'idéal annulateur de x contient donc l'idéal annulateur de u. L'intérêt du concept d'idéal annulateur réside dans le fait qu'il permet de trouver des sous-espaces stables de u. Sur ces sous-espaces stables, l'endomorphisme peut s'exprimer plus simplement. Cette démarche consistant à décomposer l'espace E en sous-espaces stables et en somme directe procède de la démarche dit de réduction d'endomorphisme.

  1. Le noyau d'un polynôme d'endomorphisme de u est un sous-espace vectoriel stable par u.
  2. Soit (Pi[X]) une famille finie de polynômes premiers entre eux deux à deux. Alors la famille des (kerPi[u]) est une somme directe de sous-espaces stables par u qui engendre l'espace \textstyle\ker\prod_i P_i[u] . De plus, les projecteurs associés s'expriment comme des polynômes en u.

La dernière propriété est essentielle pour la réduction d'endomorphisme. Elle intervient dans la suite de l'article, pour l'analyse du polynôme minimal et pour l'analyse du cas où il est scindé. Elle intervient enfin dans la décomposition de Dunford.

Page générée en 0.191 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise