Construction des nombres réels
Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Il existe différentes constructions des nombres réels, dont les deux méthodes les plus rigoureuses sont

  • les coupures de Dedekind,
  • les suites de Cauchy.

Construction intuitive à partir des nombres décimaux

  • Voir article détaillé : Développement décimal (En mathématiques, le développement décimal est une façon d'écrire des nombres réels positifs à l'aide des puissances de 10 (négatives ou positives). Lorsque les...)

Un nombre (La notion de nombre en linguistique est traitée à l’article « Nombre grammatical ».) réel est une quantité (La quantité est un terme générique de la métrologie (compte, montant) ; un scalaire, vecteur, nombre d’objets ou d’une autre manière de dénommer la valeur...) qui a pour représentation décimale x = n + 0.d1d2d3..., où n est un entier, chaque di est un chiffre (Un chiffre est un symbole utilisé pour représenter les nombres.) entre 0 et 9, et la séquence ne se termine pas par une infinité de 9. La définition (Une définition est un discours qui dit ce qu'est une chose ou ce que signifie un nom. D'où la division entre les définitions réelles et les définitions nominales.) de x est alors le nombre qui satisfait cette double inéquation (Une inéquation est une question, sous forme d'une inégalité entre deux quantités algébriques. Cette inégalité contient des inconnues. Résoudre une inéquation, c'est...) pour tout (Le tout compris comme ensemble de ce qui existe est souvent interprété comme le monde ou l'univers.) k:

n + \frac{d_1}{10} + \frac{d_2}{100} + ... + \frac{d_k}{10^k} \leq x < n + \frac{d_1}{10} + \frac{d_2}{100} + ... + \frac{d_k}{10^k} + \frac{1}{10^k}

Construction par les coupures de Dedekind

Mise en place

C'est la construction imaginée par Richard Dedekind qui remarque que tout rationnel r coupe \mathbb Q en deux ensembles : l'ensemble (En théorie des ensembles, un ensemble désigne intuitivement une collection d’objets (les éléments de l'ensemble), « une multitude qui peut...) Ar des rationnels a tels a < r et l'ensemble Br des rationnels b tels b \geq r. Il appelle alors (Ar;Br) une coupure de \mathbb Q. Il remarque ensuite que \sqrt 2 peut aussi partager \mathbb Q en deux ensembles : L'ensemble A des rationnels a tels que a < \sqrt 2 et l'ensemble B des rationnels b tels que b > \sqrt 2. L'idée lui vient donc de définir l'ensemble des réels comme l'ensemble des coupures de \mathbb Q. Reste maintenant à définir une coupure sans se servir de la notion intuitive de nombre réel. Dedekind propose la définition suivante :

Une coupure de Dedekind dans le corps \mathbb Q des rationnels est un couple de 2 sous-ensembles non-vides A et B tels que
  • A\cap B = \empty
  • A\cup B = \mathbb{Q}
  • \forall a\in A, \forall b\in B, a < b

On voit ainsi que tout nombre rationnel (Un nombre rationnel est un nombre réel exprimable par le quotient de deux entiers relatifs (), dont le second est non nul. L'ensemble des nombres rationnels est noté .) r définit deux coupures :

  • (A,B) telle que A est l'ensemble des rationnels strictement inférieurs à r et B l'ensemble des rationnels supérieurs ou égaux à r
  • (A',B') telle que A est l'ensemble des rationnels inférieurs ou égaux à r et B l'ensemble des rationnels strictement supérieurs à r.

Pour lever cette ambiguïté, on utilise alors la définition suivante d'une coupure :

Une coupure de \mathbb Q est une partie A de \mathbb Q telle que
  • A est non vide (Le vide est ordinairement défini comme l'absence de matière dans une zone spatiale.) et différente (En mathématiques, la différente est définie en théorie algébrique des nombres pour mesurer l'éventuel défaut de dualité d'une application définie à l'aide de la trace, dans l'anneau...) de \mathbb Q
  • pour tout a de A, si a' < a alors a' appartient à A
  • A ne possède pas de plus grand élément.

On peut remarquer que cette seconde ( Seconde est le féminin de l'adjectif second, qui vient immédiatement après le premier ou qui s'ajoute à quelque chose de nature identique. La seconde est une unité de mesure du temps. La seconde d'arc est une...) définition permet d'assurer une correspondance (La correspondance est un échange de courrier généralement prolongé sur une longue période. Le terme désigne des échanges de courrier personnels plutôt qu'administratifs.) univoque entre chaque rationnel r et la coupure Ar définie comme l'ensemble de tous les rationnels a tels que a < r. On définit alors \R comme l'ensemble de ces coupures. On remarque alors que \R se divise en deux ensembles, l'un comprenant les coupures dont le complémentaire admet un plus petit élément, coupure de la forme Ar, et l'autre comprenant les coupures dont le complémentaire ne possède pas de plus petit élément.

Par exemple l'irrationnel \sqrt2 est représenté par la coupure \{a \in \mathbb Q \mbox{ t.q. } a < 0 \mbox{ ou  } a^2 < 2\}.

On plonge naturellement \mathbb Q dans \R par l'application injective qui, à tout rationnel r associe la coupure Ar

Propriétés

Relation d'ordre : L'ensemble des coupures, muni de la relation d'inclusion est alors un ensemble totalement ordonné (Soit E un ensemble muni d'une relation d'ordre . Rappelons que toute relation d'ordre vérifie les propriétés suivantes:) vérifiant de plus la propriété de la borne supérieure (tout ensemble non vide majoré possède une borne supérieure).

Addition (L'addition est une opération élémentaire, permettant notamment de décrire la réunion de quantités ou l'adjonction de grandeurs extensives de même nature, comme...) : On peut alors construire une addition sur \R de la manière suivante :

c \in A + B \Leftrightarrow il existe a dans A et b dans B tels que c = a + b.

Cette addition confère à \R une structure de groupe commutatif. La seule difficulté consiste en la définition de l'opposé ( En mathématique, l'opposé d’un nombre est le nombre tel que, lorsqu’il est à ajouté à n donne zéro. En botanique, les organes d'une plante sont dits opposés lorsqu'ils sont...) de A : A r (si A = Ar) ou - \overline A (si A \ne A_r)

Multiplication (La multiplication est l'une des quatre opérations de l'arithmétique élémentaire avec l'addition, la soustraction et la division .) : La construction de la multiplication est plus subtile. Elle est définie sur tous les réels positifs de la manière suivante:

c \in A \times B \Leftrightarrow il existe a dans A \cap \mathbb Q^+ et b dans B\cap \mathbb Q^+ tels que c \leq ab.

La règle des signes permettant alors de construire la multiplication sur tout \R

L'ensemble \R muni des ces deux lois est alors un corps commutatif archimédien (A l'origine, l'énoncé de l'axiome d'Archimède est le suivant : « Pour deux grandeurs inégales, il existe toujours un multiple entier de la plus petite, supérieur à la plus grande. ») complet.

Construction via les suites de Cauchy

Cette construction est plus difficile à aborder mais elle offre deux avantages : la constructions des opérations y est plus naturelle et elle a le mérite de se généraliser à tout espace métrique (En mathématiques, un espace métrique est un ensemble au sein duquel une notion de distance entre les éléments de l'ensemble est définie. C'est un cas...).

Définition en tant qu'ensemble

L'idée de Cantor (et quelques années avant lui de Méray) réside dans le fait que l'on peut atteindre tout nombre réel par une suite de Cauchy (En analyse mathématique, une suite de Cauchy est une suite de réels, de complexes, de points d'un espace métrique, ou d'un espace topologique uniforme dont les termes se rapprochent à partir d'un certain rang. Ces...). C’est-à-dire une suite (un) vérifiant le critère de convergence (Le terme de convergence est utilisé dans de nombreux domaines :) suivant :

\forall \varepsilon >0 \; \exists N \in \N \; \forall m,n>N \quad |u_m - u_n|< \varepsilon\;

L'élément limite auquel il va falloir donner un sens (SENS (Strategies for Engineered Negligible Senescence) est un projet scientifique qui a pour but l'extension radicale de l'espérance de vie...) sera alors défini comme un nombre réel. L'ensemble des suites de Cauchy, que nous notons \mathcal C apparaît cependant bien trop vaste. En effet, par exemple pour un rationnel donné, il existe une infinité de suites de Cauchy convergeant vers cette limite. Il est nécessaire de quotienter cet espace par une relation d'équivalence entre les suites. Si nous notons \mathcal R cette relation d'équivalence entre deux suites (un) et (vn), elle est définie de la manière suivante :

(u_n) \mathcal R (v_n) \Leftrightarrow  \lim_{n \to \infty}u_n-v_n=0

Nous pouvons remarquer que la relation \mathcal R est bien reflexive car la suite nulle converge bien vers 0, symétrique car si une suite converge vers 0, alors la suite opposéee converge aussi vers 0, et la transitivité est une conséquence de l'inégalité triangulaire sur la valeur absolue (Un nombre réel est constitué de deux parties: un signe + ou - et une valeur absolue.) dans \mathbb Q. Si (un), (vn) et (wn) sont trois suites rationnels, nous avons en effet:

\forall n \in \N \quad |u_n -w_n| \leq |u_n - v_n|+|v_n - w_n|\;

Toute relation d'équivalence sur un ensemble définit une partition de cet ensemble. Un élément de cette partition est appelé nombre réel, et l'ensemble des nombres réels est noté \R.

Remarque : Lorsque l'on fait tendre quelque chose vers une limite ici, c'est par des \varepsilon > 0\, rationnels que l'on va encadrer, car on ne dispose pas encore des réels!

Définition en tant que corps

L'ensembles des suites dans \mathbb Q est naturellement muni d'une structure d'anneau avec l'addition et la multiplication héritées de la structure de corps des suites. Si (un) et (vn) sont deux suites, alors ces opérations sont définies par :

\forall n \in \N \quad (u+v)_n=u_n+v_n \,
\forall n \in \N \quad (u\cdot v)_n=u_n\cdot v_n \,

Ces opérations conservent le critère de Cauchy, ainsi la somme et le produit de deux suites de Cauchy sont encore des suites de Cauchy. Il est ainsi possible de munir \mathcal C d'une structure d'anneau.

Ces opérations conservent la partition définie par la relation \mathcal R. Ainsi quel que soit les représentants choisis de deux classes de \mathcal R la somme (resp. la multiplication) des représentants appartient à la même classe de \mathcal R. Il est ainsi possible de munir \R d'une structure d'anneau. On vérifie alors que la classe de (0) est l'élément neutre et la classe de (1) l'unité. On vérifie que \R est de plus un corps commutatif.

On plonge \mathbb Q dans \R via les suites constantes. On notera (a) la classe contenant la suite constante égale à a\in\mathbb Q.


Relation d'ordre

On définit \R_+ de la manière suivante : x\in \R_+ \Leftrightarrow

  • x = 0
ou
  • il existe une suite de Cauchy rationnelle (an) et un rationnel positif r tel que (an) soit un représentant de x et an > r à partir d'un certain rang

et \R_- de la manière suivante : x\in \R_- \Leftrightarrow

  • x = 0
ou
  • il existe une suite de Cauchy rationnelle (an) et un rationnel négatif r tel que (an) soit un représentant de x et an < r à partir d'un certain rang.

On définit alors une relation d'ordre sur \R en posant

x \leq y \Leftrightarrow y - x \in \R_+

On démontre que \R muni de cette relation d'ordre est un corps totalement ordonné archimédien et que cette relation d'ordre coïncide avec la relation d'ordre sur \mathbb Q


Distance et limite

La valeur absolue (L'absolue est un extrait obtenu à partir d’une concrète ou d’un résinoïde par extraction à l’éthanol à température ambiante ou plus généralement par chauffe,...) est alors définie par

|x| = \sup(x ; -x)\,

On remarque alors que si (an) est un représentant de x alors ( | an | ) est un représentant de | x | .

On peut alors munir \R d'une distance

d(x , y)= |x - y|

et y définir la convergence de suite.

On démontre à ce propos que, si x a pour représentant la suite de Cauchy rationnelle (xn), alors cette suite est aussi une suite de réels (\mathbb Q est plongé dans \R par la correspondance suivante : r a pour représentant la suite constante (r)) et cette suite de réels a pour limite x. Cela permet en autre de prouver que \mathbb Q est dense dans \R car tout réel est limite d'une suite de rationnels.

On démontre aussi que, sur cet ensemble, la limite d'une somme est égale à la somme des limites, la limite d'un produit au produit des limites et que la limite d'une suite positive est positive ou nulle.

Complétude (On parle de complétude en mathématiques dans des sens très différents. On dit d'un objet mathématiques qu'il est complet pour exprimer que rien ne peut lui être ajouté, en un sens qu'il...) et borne supérieure

On sait déjà que, par construction, toutes les suites de Cauchy rationnelles convergent ( en astronautique, convergent en mathématiques, suite convergente série convergente ) dans \R. Mais on démontre que c'est aussi le cas pour toute suite de Cauchy réelle.

Cette méthode de construction se généralise à tout espace métrique E pour obtenir un espace métrique complet E' tel que E soit dense dans E'.

On démontre de plus que \R vérifie la propriété de la borne supérieure : tout sous-ensemble (En mathématiques, un ensemble A est un sous-ensemble ou une partie d’un ensemble B, ou encore B est sur-ensemble de A, si tout élément du sous-ensemble A est aussi élément du sur-ensemble B. Il peut par contre y avoir des éléments...) non vide majoré possède une borne supérieure.


Page générée en 0.161 seconde(s) - site hébergé chez Amen
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
Ce site est édité par Techno-Science.net - A propos - Informations légales
Partenaire: HD-Numérique