Champ de vecteurs - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Applications en physique ondulatoire

Une équation différentielle ayant comme solution des champs de vecteurs (qui représentent, par exemple la propagation des ondes), est dite linéaire si toute combinaison linéaire à coefficients constants de solutions est une solution.

Cette propriété est caractéristique d'un espace vectoriel dont chaque point correspond à une solution.

Un ensemble de solutions ne différant que par un facteur de proportionnalité réel est représenté par un rayon, c’est-à-dire une droite passant par l'origine.

En acoustique et en optique, un tel rayon est appelé mode.

Si on peut définir l'orthogonalité des solutions appartenant à deux modes, on peut définir l'orthogonalité des modes.

En acoustique et en électromagnétisme, deux solutions sont orthogonales si la somme des énergies de chaque solution est égale à l'énergie de la somme des solutions.

L'équation différentielle d'une onde peut conduire à des solutions dont l'énergie décroît avec le temps, ou à des ondes "conservatives", dont l'énergie ne dépend pas du temps.

Dans ce dernier cas, on peut normer les solutions, par exemple, en électromagnétisme, on peut poser qu'une mode monochromatique correspond à un vecteur unité si son énergie est le produit de la constante de Planck par la fréquence f de l'onde. On obtient alors un repère orthonormé de l'espace des modes.

On peut chercher à absorber une onde, par exemple un bruit gênant.

A cet effet, on peut utiliser des "absorbeurs actifs" constitués par des haut parleurs et une électronique générant des ondes localement en opposition de phase avec l'onde gênante.

Mais générer exactement une onde complexe est irréalisable, et l'expérience comme la théorie montrent qu'on peut seulement atténuer l'onde gênante.

Heureusement, en acoustique, les ondes ne sont pas conservatives et le bruit s'éteint.

Mais les équations de Maxwell dans le vide régissent des ondes électromagnétiques conservatives, de sorte qu'une onde émise par un atome ne peut pas être annulée par les ondes émises par d'autres atomes; en conséquence, il subsiste des ondes résiduelles dites "champ du point zéro", car elles existent dans un corps noir à 0 K.

Planck a commis une erreur de calcul en déterminant l'amplitude des ondes résiduelles, mais il a présenté à l'Académie de Berlin, en 1916, une communication qui en donnait l'énergie moyenne hf/2.

Remarquons que le champ électromagnétique dans un mode donné ne dépend que d'un paramètre réel, appelé amplitude, de sorte qu'il est impossible de distinguer un champ du point zéro de tout autre champ.

Champ de vecteurs sur une variété différentielle

Par définition, un champ de vecteurs sur une variété différentielle est une section du fibré tangent de cette variété.

Un tel champ est décrit au voisinage de chacun de ses points réguliers, par le théorème du redressement : il existe une carte locale dans laquelle le champ se lit comme le champ « premier vecteur de coordonnées ».

Si la variété est compacte, les lignes de champ sont définies sur ℝ entier.

Page générée en 0.094 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise