Hypothèse de la Terre rare - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

Les planètes pouvant abriter la vie comme la Terre sont-elles rares ?

En astronomie planétaire et en astrobiologie, l'hypothèse de la Terre rare soutient que l'émergence d'une vie multicellulaire complexe (metazoa) sur Terre a exigé une combinaison improbable d'évènements et de circonstances astrophysiques et géologiques. Le terme Terre rare provient de Rare Earth: Why Complex Life Is Uncommon in the Universe (2000), un livre écrit par le géologiste et paléontologiste Peter Ward, et l'astronome et astrobiologiste Donald E. Brownlee (en). Leur livre constitue la source de l'essentiel de cet article.

L'hypothèse de la Terre rare s'oppose au principe de médiocrité (appelé aussi Principe copernicien) soutenu par Carl Sagan et Frank Drake, entre autres. Le principe de médiocrité conclut que la Terre est une planète rocheuse typique, dans un système planétaire typique, localisé dans une région sans aucun caractère exceptionnel d'une galaxie spirale barrée courante. Il est donc probable que l'univers fourmille de vie complexe. Ward et Brownlee soutiennent a contrario que les planètes, les systèmes planétaires et les régions galactiques qui sont favorables à une vie complexe, comme la Terre, le Système solaire et notre région de la Voie lactée sont probablement très rares.

L'hypothèse de la Terre rare, en concluant que la vie complexe n'est pas commune, est une solution possible du paradoxe de Fermi : « Si les extra-terrestres sont courants, pourquoi ne les voit-on pas ? »"

Les zones galactiques habitables

Dans une zone manquant de métaux ou bien une zone proche du centre de la galaxie, exposée à un rayonnement important, une planète n'est pas en mesure d'abriter la vie. La galaxie photographiée est NGC 7331, souvent identifiée comme la jumelle de la Voie lactée.

Rare Earth suggère qu'une grande partie de l'univers connu, y compris de grandes parties de notre galaxie, ne peut pas abriter de vie complexe ; Ward et Brownlee désignent ces régions comme des « zones mortes ». Les parties de galaxies où la vie complexe est possible constituent la zone galactique habitable. Cette zone est d'abord fonction de la distance au centre galactique. Avec la distance croissante :

  1. La métallicité des étoiles décline, et les métaux (terme qui, en astronomie, signifie les éléments plus lourds que l'hydrogène et l'hélium) sont nécessaires à la formation des planètes telluriques.
  2. Les radiations X et Gamma provenant des trous noirs du centre de la galaxie, et des étoiles à neutrons proches, perdent en intensité. Une radiation de cette nature est considérée comme dangereuse pour la vie complexe, en sorte que l'hypothèse de la Terre rare prédit que l'univers primitif, et également à présent, les régions de la galaxie où la densité des stellaire est élevée et les supernovae communes sont inadaptées au développement de la vie complexe.
  3. La probabilité de perturbations gravitationnelles aux planètes (et aux planétésimaux) par les étoiles proches diminue avec la densité décroissante des étoiles. En sorte que plus une planète se trouve éloignée par rapport au centre de la galaxie, moins il est probable qu'elle soit heurtée par un gros bolide. Un impact suffisamment important peut conduire à l'extinction de toute vie complexe sur une planète.

La proposition (1) ci-dessus régit les abords extérieurs d'une galaxie ; les propositions (2) et (3) régissent les régions intérieures de la galaxie, les amas globulaires, et les bras spiraux des galaxies spirales. Ces bras ne sont pas des objets physiques, mais des régions d'une galaxie caractérisées par un taux élevé de formation d'étoiles, se déplaçant à la vitesse d'environ 240 km/s (pour le système solaire), ils décrivent un mouvement ondulatoire. Du centre d'une galaxie vers sa périphérie, la capacité à abriter la vie augmente puis retombe. En sorte que la zone galactique habitable peut affecter la forme d'un anneau, prise en sandwich entre son centre et sa périphérie, tous deux inhabitables.

Non seulement un système planétaire peut jouir d'une localisation favorable à l'apparition de la vie complexe, mais il doit aussi maintenir cette localisation pendant une durée suffisamment longue pour que la vie complexe évolue. Et donc, une étoile centrale avec une orbite galactique qui évolue à l'écart des régions galactiques à haut niveaux de radiations, telles que les centres galactiques, et les bras spiraux, paraît potentiellement constituer un support très favorable. Si l'orbite galactique de l'étoile centrale est excentrique, elliptique ou hyperbolique, elle traversera quelques bras spiraux, mais si l'orbite est un cercle quasi parfait, et que la vitesse orbitale égale le vitesse de « rotation » des bras spiraux, l'étoile finira par sombrer dans une région de bras spiral, d'abord graduellement, puis entièrement. Par conséquent, les tenants de la « Terre rare » en concluent qu'une étoile supportant la vie doit avoir une orbite galactique presque circulaire autour du centre de sa galaxie. La synchronisation requise entre la vitesse orbitale d'une étoile de la zone centrale et la vitesse de l'onde des bras spiraux ne peut se produire que dans des bandes plutôt étroites de distances au centre galactique. Ces régions sont dénommées la « zone galactique habitable ». Lineweaver et al. calculent que la zone galactique habitable est un anneau de 7 à 9 kiloparsec de diamètre, qui ne comprend pas plus que 10 % des étoiles de la Voie lactée. En se basant sur des estimations prudentes du nombre total d'étoiles contenues dans la Galaxie, ceci pourrait représenter de l'ordre de 20 à 40 milliards d'étoiles. Gonzalez et al. diminueraient ce chiffre de moitié, : ils estiment qu'au plus 5 % des étoiles de la Galaxie se trouvent dans la zone galactique habitable.

Effectivement, l'orbite du Soleil autour du centre de la Voie lactée est un cercle pratiquement parfait, avec une période de révolution de 225 millions d'années, correspondant étroitement à la période de rotation de la galaxie. Karen Masters a calculé que l'orbite du Soleil traverse un bras spiral majeur tous les 100 millions d'années. Au contraire, l'hypothèse de la Terre rare prévoit que le Soleil, depuis sa formation, ne devrait avoir traversé aucun bras spiral. Cependant, certains chercheurs ont suggéré que plusieurs extinctions en masse correspondent effectivement à de précédentes traversées de bras spiraux.

Page générée en 0.173 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise