Un système logique ou système de déduction est constitué de trois composantes. Les deux premières définissent sa syntaxe, la troisième sa sémantique :
La caractéristique principale des formules et des déductions est qu'il s'agit d'objets finis ; plus encore, chacun des ensembles de formules et de déductions est récursif, c'est-à-dire que l'on dispose d'un algorithme qui détermine si un objet donné est une formule correcte ou une déduction correcte du système.
La sémantique, au contraire, échappe à la combinatoire en faisant appel (en général) à des objets infinis. Elle a d'abord servi à « définir » la vérité. Par exemple, en calcul des propositions, les formules sont interprétées par des éléments d'une algèbre de Boole ; les formules valides sont celles qui sont interprétées par le plus grand élément.
Une mise en garde est de rigueur ici, car Kurt Gödel (suivi par Alfred Tarski) a montré avec son théorème d'incomplétude l'impossibilité de définir mathématiquement la vérité mathématique. C'est pourquoi il est plus approprié de voir la sémantique comme une métaphore : les formules — objets syntaxiques — sont projetées dans un autre monde, plus abstrait, par exemple les algèbres de Boole. Cette technique — plonger les objets dans un monde plus vaste pour mieux raisonner dessus — est couramment utilisée en mathématique et a amplement démontré son efficacité.
Ainsi la sémantique ne sert pas qu'à « définir » la vérité. Par exemple, la sémantique dénotationnelle est une interprétation, non des formules, mais des déductions visant à capturer leur contenu calculatoire.
En logiques classique et intuitionniste, on distingue deux types d'axiomes : les axiomes logiques qui expriment des propriétés purement logiques comme par exemple
Deux systèmes de déduction peuvent être équivalents au sens où ils ont exactement les mêmes théorèmes. On démontre cette équivalence en fournissant des traductions des déductions de l'un dans les déductions de l'autre. Par exemple, il existe (au moins) trois types de systèmes de déduction équivalents pour le calcul des prédicats : les systèmes à la Hilbert, la déduction naturelle et le calcul des séquents. On y ajoute parfois le style de Fitch qui est une variante de la déduction naturelle dans laquelle les démonstrations sont présentées de façon linéaire.
Alors que la théorie des nombres démontre des propriétés des nombres, on notera la principale caractéristique de la logique en tant que théorie mathématique : elle « démontre » des propriétés de systèmes de déduction dans lesquels les objets sont des « théorèmes ». Il y a donc un double niveau dans lequel il ne faut pas se perdre. Pour clarifier les choses, les « théorèmes » énonçant des propriétés des systèmes de déduction sont parfois appelés des « métathéorèmes ». Le système de déduction que l'on étudie est appelé la « théorie » et le système dans lequel on énonce et démontre les métathéorèmes est appelé la « métathéorie ».
Les propriétés fondamentales des systèmes de déduction sont les suivantes.
Une autre propriété des systèmes de déduction apparentée à la complétude est la cohérence maximale. Un système de déduction est maximalement cohérent, si l'ajout d'un nouvel axiome qui n'est pas lui-même un théorème rend le système incohérent.
Affirmer « tel système est complet pour telle famille de modèles » est un exemple typique de métathéorème.
Dans ce cadre, la notion intuitive de vérité donne lieu à deux concepts formels : la validité et la démontrabilité. Les trois propriétés de correction, cohérence et complétude précisent comment ces notions peuvent être reliées, espérant qu'ainsi la vérité, quête du logicien, puisse être cernée.