Lorsqu'un milieu matériel est mis en présence d'un champ électrique
, il est susceptible de modifier ce champ en créant une polarisation
. Cette réponse du matériau à l'excitation peut dépendre du champ
de différentes façons. L'optique non linéaire regroupe l'ensemble des phénomènes optiques présentant une réponse non linéaire par rapport à ce champ électrique, c'est-à-dire une réponse non proportionnelle à E.
En présence d'une onde électromagnétique du domaine de l'optique (longueur d'onde de l'ordre de 1000 nm), autrement dit, de lumière, beaucoup de matériaux sont transparents, et certains d'entre eux sont non linéaires, c'est pourquoi l'optique non linéaire est possible. Les principales différences avec l'optique linéaire sont les possibilités de modifier la fréquence de l'onde ou de faire interagir entre elles deux ondes par l'intermédiaire du matériau. Ces propriétés étonnantes ne peuvent apparaître qu'avec des ondes lumineuses de forte intensité. C'est pourquoi des expériences d'optique non linéaire n'ont pu être réalisées qu'à partir des années 1960 grâce à l'apparition de la technologie des lasers.
La polarisation créée par une onde lumineuse traversant un matériau s'écrit sous la forme :
où est la polarisation d'ordre i en puissances du champ électrique. Plus précisément, on peut montrer que pour i ondes de fréquences ω1,...,ωi dont on note les amplitudes , la polarisation suivante est créée :
où est la permittivité du vide, et est le tenseur de susceptibilité électrique d'ordre i qui dépend du matériau utilisé. Cette dernière expression montre que l'onde créée a une fréquence différente des ondes initialement présentes.
Une interprétation des non-linéarités apparaissant dans la polarisation provient de l'aspect microscopique de la matière. Chaque atome d'un matériau diélectrique est entouré d'un nuage électronique susceptible de se déformer sous l'action de , ce qui crée un dipôle électrique. Ce dipôle, pour une petite déformation, est proportionnel à E, mais si la déformation est trop importante, ce n'est plus le cas. La somme de tous les dipôles est alors la polarisation introduite plus haut, d'où sa non-linéarité. On peut utiliser un raisonnement analogue dans le cas des métaux et des plasmas : les électrons libres subissent, de la part du champ excitateur, une force de Lorentz dépendant de la vitesse des électrons, et donc de la polarisation. Ainsi, ces milieux peuvent également présenter des effets non linéaires.
Chaque type de matériau présente des susceptibilités électriques différentes. Ils donnent donc des effets non linéaires de différents ordres. On classe alors ces effets suivant cet ordre.
Seul le premier terme de la polarisation intervient :
Il s'agit de l'optique linéaire classique où la fréquence de l'onde créée est forcément égale à celle de l'onde initiale. Les effets alors observés sont la réfraction des ondes et la biréfringence.
La polarisation s'écrit :
On peut notamment citer les effets suivants :
Si des électrodes sont disposées judicieusement sur certaines faces du cristal, une tension électrique apparaît : le signal de rectification optique. Ce dernier est proportionnel à la puissance lumineuse éclairant le cristal, et l'on montre par un traitement quantique que ce dernier constitue un signal de mesure Quantique Non Destructive (QND) du flux lumineux (i.e. flux de photons). De récentes recherches ont été menées dans ce sens au sein du groupe d'Optique Quantique du Laboratoire Kastler Brossel, en collaboration avec une équipe du CEA de Saclay
La polarisation s'écrit :
On peut citer les effets suivants :