Le terme de paramètre cosmologique se réfère à une quantité qui intervient dans la description d'un modèle cosmologique et dont la valeur n'est pas connue a priori. Par exemple, les densités d'énergie des différentes formes de matière qui emplissent l'univers observable sont des paramètres cosmologiques, tout comme l'âge de l'univers. Un modèle cosmologique décrira correctement l'univers observable s'il est possible d'ajuster ses paramètres de façon à ce qu'ils permettent de rendre compte de l'ensemble des observations.
Tous les paramètres cosmologiques ne sont pas indépendants. Par exemple, la relativité générale prédit qu'il existe une relation entre la courbure spatiale, la constante de Hubble et la densité totale de l'univers (voir Équations de Friedmann). En pratique, l'estimation d'un ensemble de paramètres qui ne sont pas indépendants permet de tester la cohérence interne d'un modèle cosmologique.
Un modèle cosmologique réaliste s'efforce de décrire l'ensemble des observations relatives à l'univers avec un minimum de paramètres cosmologiques. À pouvoir descriptif identique, on préférera le modèle possédant le plus petit nombre de paramètres cosmologiques, suivant le principe du rasoir d'Occam.
Ainsi, dans le modèle standard de la cosmologie, il est nécessaire de faire appel à une composante mal connue présente de façon extrêmement uniforme dans l'univers, appelée énergie noire. Il existe plusieurs modèles d'énergie noire, comme la constante cosmologique, initialement proposée dans un contexte différent en 1917 par Albert Einstein (voir Univers d'Einstein), et la quintessence. La constante cosmologique est le modèle d'énergie noire le plus simple, et n'est décrit que par un seul paramètre, que l'on peut interpréter comme la densité moyenne de l'énergie noire, constante au cours du temps. Par contre, les modèles de quintessence nécessitent un plus grand nombre de paramètres, au nombre de deux, voire plus. Les données actuelles sont compatibles avec les hypothèses de la constante cosmologique et de la quintessence, mais cette dernière ne décrit pas mieux les observations que la première. À l'heure actuelle, les modèles de quintessence ne sont donc pas considérés comme nécessaires, bien qu'ils sont parfaitement compatibles avec les données.
L'ajout d'un paramètre cosmologique supplémentaire fait partie de l'évolution naturelle d'un modèle cosmologique à mesure que les observations deviennent de plus en plus précises. L'exemple de l'énergie noire cité plus haut en est une illustration, les observations depuis la fin des années 1990 nécessitant de façon inéluctable l'adjonction de cette composante supplémentaire pour expliquer l'accélération de l'expansion de l'univers indirectement mise en évidence par l'étude de supernovae de type Ia lointaines.
L'ensemble des observations astrophysiques relatives à la cosmologie permet aujourd'hui (2006) de décrire l'univers actuel ainsi qu'une grande partie de son histoire. Le modèle le plus abouti permettant ceci est appelé depuis quelques années le modèle standard de la cosmologie. Celui-ci suppose que l'univers a connu une phase d'expansion extrêmement rapide très tôt dans son histoire, l'inflation cosmique, ce qui explique pourquoi sa courbure spatiale est nulle. Le modèle standard de la cosmologie suppose donc que l'univers actuel est homogène et isotrope aux plus grandes échelles observables. Son contenu matériel comprend des photons (principalement ceux du fond diffus cosmologique), des neutrinos (principalement ceux du fond cosmologique de neutrinos), de la matière baryonique, de la matière noire et de l'énergie noire. La densité totale de l'univers correspond à ce que l'on appelle la densité critique, et fixe la valeur de la constante de Hubble. La phase d'inflation détermine les propriétés des fluctuations de densité qu'elle génère, qui est sont pour l'heure entièrement déterminée par ce que l'on appelle leur spectre de puissance. En pratique, ce spectre de puissance est déterminé par deux nombres : l'un décrit l'amplitude typique des fluctuations de densité d'une taille physique donnée, l'autre décrit l'amplitude relative des fluctuations de densité entre deux échelles différentes, ce que l'on appelle indice spectral. Enfin, lors de la formation des premières étoiles de l'univers, celui-ci est suffisamment dense pour que le rayonnement probablement très intense de ces étoiles de première génération soit suffisamment intense pour ioniser la quasi totalité des atomes existant à cette époque. C'est ce que l'on appelle la réionisation, révélée par le test de Gunn-Peterson. L'époque de la réionisation devrait en principe pouvoir être prédite par le modèle standard de la cosmologie, mais les difficultés rencontrées à l'heure actuelle pour modéliser la formation et l'évolution des premières étoiles dans les premières galaxies font que les détails l'époque de la réionisation sont encore mal compris. Aussi est-il à l'heure actuelle plus précis d'estimer l'époque de la réionisation par l'observation.
Le nombre de paramètres du modèle standard de la cosmologie se monte donc à six :
Dans ce cadre là, la constante de Hubble et l'âge de l'univers ne sont pas des paramètres indépendants. On parle parfois ainsi de paramètres dérivés. Cependant, l'estimation de leur valeur est bien sûr prise en compte pour ajuster les autres paramètres.