Physique du solide - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Frontières du domaine et domaines connexes

La physique du solide est considérée comme une sous-branche de la physique de la matière condensée, laquelle étudie également les liquides et les matériaux intermédiaires tels que la matière molle, les mousses ou les gels.

La délimitation est d'autre part de plus en plus floue entre la physique du solide et la science des matériaux. À l'origine, la physique du solide était une branche de la physique fondamentale, et la science des matériaux une branche de la physique appliquée. Il y a longtemps que cette distinction est caduque, sous l'effet d'une double évolution. La première évolution est celle de la physique du solide vers l'étude de systèmes de plus en plus complexes, et donc de plus en plus proches des systèmes réels et utiles. L'autre évolution est celle de la science des matériaux, qui, avec l'apparition de moyens fins d'investigation (comme par exemple le microscope électronique, qui permet une observation à l'échelle atomique) ainsi que d'élaboration (par exemple l'épitaxie, qui permet une élaboration de semi-conducteurs couche d'atomes par couche d'atomes) est parfois devenue une ingénierie des matériaux à l'échelle atomique. Elle s'est donc intéressée de très près aux phénomènes à cette échelle, et a ainsi empiété largement sur le domaine de la physique fondamentale. Au total, la distinction entre ces deux disciplines relève maintenant plus d'une nuance d'approche que d'autre chose.

Les matériaux synthétisés ont vocation à être utilisés dans d'autres sciences, et à ce titre la physique du solide est fréquemment en contact avec d'autres disciplines comme l'optique, l'électronique, la mécanique...

Propriétés mécaniques et structurales (arrangement des atomes dans les solides)

Propriétés mécaniques macroscopiques

Les solides étant caractérisés par des formes définies, pérennes et stables, les premières investigations réussies portèrent sur la façon dont ils pouvaient revenir à leur état initial après l'application de contraintes extérieures. C'est le domaine des déformations élastiques, dont l'étude fut initiée par Robert Hooke . Cependant, cette capacité de retour à l'état antérieur sans dommage résiduel est restreinte à des déformations dues à des contraintes limitées. Au-delà de ce domaine s'étend le domaine des déformations irréversibles et de la rupture. Ainsi, le domaine des déformations plastiques, dans lequel les déformations sont assez importantes pour modifier suffisamment et de façon irréversible la structure interne du solide et empêcher un retour à l'état de départ. Comme autre déformation irréversible, le fluage est une déformation lente sous une contrainte modérée mais continue, avec une accumulation progressive de dommages sur la microstructure. Un autre effet des déformations irréversible peut être de changer les caractéristiques physiques des matériaux. Par exemple, un matériau présentant à l'origine une certaine plasticité peut devenir cassant et fragile après avoir été soumis à des cycles de déformation : c'est l'écrouissage.

Propriétés atomiques
alliage et effet de durcissement • piézoélectricité

Défauts dans les cristaux

Les propriétés mécaniques macroscopiques des solides sont modélisées en supposant que les matériaux sont des corps continus, dont le comportement est caractérisé par des grandeurs phénoménologiques – c'est-à-dire mesurées expérimentalement. Si cette approche marche bien pour décrire les déformations élastiques réversibles, au cours de laquelle les atomes bougent peu autour de leur position d'équilibre, elle ne permet ni d'expliquer la valeur observée du module d'Young, ni les comportements révélateurs de la structure microscopique du matériau : par exemple pourquoi un fil de fer écroui est plus fragile qu'un fil fraîchement produit. La démarche propre à la physique du solide de partir du microscopique pour en dériver les propriétés macroscopiques explique l'écrouissage par une accumulation de défauts dans la structure cristalline.

Un cristal réel présente en effet des écarts par rapport au cristal parfait qui modifient profondément ses propriétés. Ces défauts sont classés pour l'essentiel suivant des critères géométriques et topologiques. On distingue ainsi les défauts ponctuels, les défauts linéaires nommés dislocations, les défauts plans nommés joints de grains et les défauts tridimensionnels nommés macles. En particulier, l'écrouissage s'explique par le mouvement des dislocations suivant le mécanisme de Franck et Reed : la déformation du réseau cristallin est possible lorsque les dislocations peuvent bouger librement, mais celles-ci se figent lorsque deux dislocations se rencontrent. À force de déformer le matériau, on crée une forte densité de dislocations figées, qui finissent par empêcher la déformation du matériau, lequel finit par casser.
Un autre exemple intéressant de modification de la microstructure est la trempe des aciers. Durant celle-ci des impuretés en solution précipitent autour des dislocations et bloquent les mouvements irréversibles – cause de la plasticité – au profit de déformations réversibles de celles-ci – engendrant l'élasticité. Il en résulte une modification sensible des propriétés mécaniques macroscopiques, mise à profit dès l'âge du fer.

Méthodes d'investigation

Cristallographie

Historiquement, les premières investigations sur la structure interne des solides ont été réalisées en clivant des cristaux et en remarquant que les faces faisaient toujours un angle particulier entre elles. Par une réflexion s'étalant sur plusieurs siècles, les cristallographes en ont déduit que les cristaux pouvaient être décrits comme la répétition infinie d'une unité élémentaire, la maille, selon les vecteurs d'un réseau géométrique, puis l'étude mathématique de ces réseaux par les méthodes de la théorie des groupes a abouti à la classification complète des cristaux à l'aide de leurs propriétés de symétrie. Plus qu'une simple méthode de catégorisation, l'étude du groupe ponctuel de symétrie et du groupe d'espace permet de prévoir directement certaines propriétés d'un cristal, ou du moins simplifie grandement les calculs de mécanique quantique nécessaires à leur explication. On peut citer à titre d'exemple le fait qu'aucun cristal centrosymétrique – c'est-à-dire identique à lui même lorsque l'on applique une symétrie ponctuelle – ne possède de propriété optique non-linéaire d'ordre deux.

Au réseau dans l'espace réel est associé un réseau dans l'espace réciproque, un espace mathématique abstrait qui sert à décrire certaines propriétés du cristal comme par exemple les propriétés de diffraction. La découverte des rayons X à la fin du XIXs, puis leur utilisation en radiocristallographie prouva de façon définitive la nature atomique des solides tout en permettant de mesurer très précisément les paramètres de maille de nombreux cristaux.

Autres méthodes

L'invention en 1931 de la microscopie électronique en transmission fournit l'outil d'un essor considérable de la métallurgie physique dans l'après-guerre. En 1955 apparaît le premier microscope électronique à balayage qui permet une analyse de la surface des échantillons beaucoup plus fine que le microscope optique. Il faut noter au passage le microscope électronique à balayage par transmission développé dans les années 1970 qui combine un faisceau d'électrons explorant la profondeur de l'échantillon avec les outils électroniques de reconstitution d'image du microscope à balayage. La mise au point en 1981 du microscope à effet tunnel permet l'observation des surfaces à l'échelle atomique. Un développement important sur le modèle du microscope à effet tunnel est le microscope à force atomique. Notons enfin la diffraction de neutrons et le rayonnement synchrotron qui nécessitent pour leur mise en œuvre un réacteur nucléaire ou un accélérateur de particules dédiés.

Page générée en 0.121 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise