Physique du solide - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Méthodes de production

Les propriétés dépendent fondamentalement de la microstructure amorphe ou cristalline ainsi que de la composition chimique, avec une sensibilité allant parfois jusqu'au niveau de l'impureté (1 atome par million ou moins). Deux genres d'élaboration sont possibles :

  • les méthodes les plus performantes — mais aussi les plus coûteuses — abordent les deux aspects en une seule étape. C'est le cas de l'épitaxie, de la pulvérisation cathodique ou de la cristallogénèse. De plus la nature même de ces méthodes limite la taille des échantillons produits ;
  • d'autres méthodes — moins performantes mais économiquement très importantes — sont spécifiquement dévolues à chacun des deux aspects : par exemple l'élimination des impuretés par fusion de zone ou leur ajout contrôlé par dopage d'un côté pour les semi-conducteurs, des méthodes d'hypertrempe ou de recuit d'un autre côté pour maitriser la microstructure cristalline des métaux.

Propriétés thermiques et thermodynamiques

Conductivité thermique
Chaleur spécifique
Loi de Dulong et Petit • Modèle d'Einstein • Modèle de Debye • phonons et quantification des vibrations élémentaires
Solutions solides et transition de phase
EutectiqueAlliageMélange binaire
Transport électrique et transport thermique
Effet Pelletier et effet Seebeck

Propriétés électroniques et optiques

électrodynamique des milieux continus et propriétés électromagnétiques macroscopiques
constante diélectriquecoefficient d'absorption
propriétés électriques
diélectriqueferroélectricité

Interprétation microscopique

Dans le cas idéal, le Graal du physicien du solide est d'extraire toutes les propriétés macroscopiques (magnétiques, électriques, mécaniques...) des propriétés atomiques – c'est-à-dire essentiellement des fonctions d'onde électroniques. Ceci n'est malheureusement pas toujours possible à cause de la très grande complexité induite par le grand nombre d'atomes mis en jeu dans le moindre échantillon (le solide est un objet macroscopique, et à ce titre, possède un nombre d'atomes d'un ordre de grandeur comparable avec le nombre d'Avogadro).

Parmi les quelques cas où cette démarche peut être cependant fructueuse figure celui important méthodologiquement, historiquement et techniquement du cristal parfait infini.

L'existence d'une périodicité dans le potentiel vu par les électrons simplifie fortement le calcul des fonctions d'onde : le théorème de Bloch montre alors que la fonction d'onde a la même période spatiale que le réseau cristallin.

théorie des bandes et méthodes de calcul des états quantiques

Une simplification capitale apparait dans la résolution de la fonction d'onde du solide : c' est la séparation du problème de la fonction d'onde des électrons assurant la cohésion du solide (électrons périphériques ou délocalisés) de celle du cœur des atomes (noyaux et électrons des couches internes restant liés à celui-ci), due à la très grande différence de dynamique entre ces deux composants (le noyau est plusieurs milliers de fois plus massique que l'électron) qui pourtant interagissent fortement (sinon la cohésion du solide ne serait pas assurée !). Il en résulte paradoxalement une très faible variation couplage entre ces modes deux modes du hamiltonien pour des variations mêmes relativement importantes de l'autre mode tant que les effets moyens entre les cœurs d'atomes et les électrons de liaison restent pratiquement constants. C'est l'approximation de Born-Oppenheimer.

Approximation de Born-Oppenheimer • Théorie de la fonctionnelle de la densitéApproximation des liaisons fortesPseudo-potentielOnde de Bloch et fonction enveloppe dans les cristaux • méthode k.p
problème à N corps et quasi-particules
masse effective • résonance cyclotron • trou d'électronexcitonphonon • autres quasi-particules (magnon, plasmon, polaron, polariton,...)

Transport du courant

propriétés spécifiques aux métaux
conductivité électriquemodèle de Drude • mobilité • plasmon • dégénérescence et niveau de Fermi • liquide de Fermi
dopage et jonctions
Page générée en 0.120 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise