En mathématiques, un plan est un objet fondamental à deux dimensions. Intuitivement il peut être visualisé comme une feuille d'épaisseur nulle qui s'étend à l'infini. L'essentiel du travail fondamental en géométrie et en trigonométrie s'effectue en deux dimensions donc dans un plan.
Dans les Éléments d'Euclide, seule la notion de figure plane est définie. Une figure plane est une figure contenue dans la surface balayée par une droite dont un point est fixé et le second assujetti à se déplacer sur une seconde droite. Cette définition repose malheureusement sur la définition donnée de surface qui manquait de précision. Dans la présentation actuelle des mathématiques, un plan vectoriel ou affine est défini comme un objet de l'algèbre linéaire :
Un Plan (vectoriel ou affine) est un K-espace vectoriel ou un K-espace affine de dimension deux, où K désigne un corps.
Le cas le plus fréquent correspond à celui où le corps K est celui des nombres réels. Ainsi le plan complexe désigne le corps des nombres complexes considéré comme un espace vectoriel de dimension deux sur le corps des réels.
Un cas important est celui où un plan désigne un sous-espace affine de dimension deux dans un espace de dimension trois sur le corps des réels. Cette situation modélise simplement notre géométrie.
Il existe alors de nombreuses manières de définir un plan, notamment :
Par la suite, nous utiliserons les deux dernières définitions pour l'élaboration des équations du plan.
Étant donnés (D) une droite et un plan (P), les différentes positions relatives sont :
Dans un espace de dimension trois, (D) est parallèle à (P) si et seulement si (D) est incluse dans (P) ou disjointe de (P).
Dans un espace de dimension trois, il n'existe que deux positions relatives de deux plans :
Un plan est un sous-espace de dimension 2 d'un espace vectoriel sur un corps . On parle aussi dans ce cas d'un plan vectoriel.
Un plan est toujours engendré par deux vecteurs v et w non colinéaires. De la sorte, x est un vecteur du plan si et seulement s'il est combinaison linéaire de v et w, à coefficients dans . Si V est de dimension finie n, on peut aussi définir un plan par n − 2 formes linéaires indépendantes s'annulant sur tous les vecteurs du plan. Il est particulièrement intéressant de disposer de cette dernière caractérisation, si on veut, par exemple, déterminer les points d'intersection du plan et d'un autre objet, par exemple une courbe ou une surface.
Dans le cas où l'espace V est de dimension 3, il suffit d'une seule forme linéaire pour définir un plan. Connaissant deux vecteurs v et w qui l'engendrent, de coordonnées
il est utile de savoir fabriquer une forme linéaire donnant l'équation du plan. Le produit mixte de v, w et z est nul si et seulement si z appartient au plan engendré par v et w. Ce produit mixte s'écrit
On a ainsi obtenu la forme linéaire désirée.
Réciproquement, si on possède une forme linéaire définissant un plan, on peut trouver aisément deux vecteurs engendrant ce plan à partir de la forme linéaire. Il existe forcément un coefficient non nul parmi a1,a2 et a3. Disons que ce coefficient est a2. On peut alors réécrire l'équation du plan sous la forme
Alors en substituant au couple (z1,z3) les couples indépendants (1,0) et (0,1), on obtient deux vecteurs
qui sont forcément indépendants puisque leurs projections respectives sur le plan des z1,z3 par rapport à l'axe des z2 sont des vecteurs indépendants.
Supposons qu'on ait dans un espace de dimension n deux vecteurs v et w indépendants. Comment trouver n − 2 formes linéaires indépendantes donnant les équations du plan? Cela revient à chercher une base de solutions du système linéaire
Pour ce faire, on sélectionne deux indices p et q tels que les couples (vp,vq) et (wp,wq) soient linéairement indépendants. Géométriquement, cela revient à sélectionner un plan de coordonnées tel que la projections respaectives de v et w sur ce plan, parallèlement au sous-espaces{z:zp = zq = 0} soient indépendantes. Un tel plan existe toujours parce que v et w sont indépendants. Une fois ceci fait, on réécrit le système précédent sous la forme
La solution de ce système linéaire est obtenue par les méthodes classiques. Pour obtenir une base de l'espace des solutions, il suffira de substituer à la suite à n − 2 éléments les éléments de la base canonique de l'espace vectoriel , c'est-à-dire
Réciproquement, étant données n − 2 formes linéaires indépendantes , on trouve deux vecteurs indépendants dans le plan défini comme ensemble des points où s'annulent ces formes linéaires, en trouvant une base de l'ensemble des solutions du système En pratique, la meilleure manière de procéder est de mettre la matrice L du système sous forme échelonnée, moyennant d'éventuelles permutations sur les colonnes. Comme M est de rang n − 2, cet algorithme fournira n − 2 variables par rapport auxquelles on résoudra, et deux variables indépendantes à mettre dans le second membre. La résolution est alors rapide. Il faut absolument éviter les formules de Cramer pour détecter les indices des variables par rapport auxquelles on résout : il faudrait calculer n(n − 1) / 2 déterminants , pour un nombre total d'opérations de l'ordre de n4, si on calcule les déterminants par algorithme de Gauss-Jordan, alors que le passage sous forme échelon permet de conclure pour un nombre d'opérations de l'ordre de n3.