Mécanique quantique | ||||||||||||||
| ||||||||||||||
Postulats de la mécanique quantique Histoire de la mécanique quantique
| ||||||||||||||
Le principe d'incertitude fut énoncé au printemps 1927 par Heisenberg lors des balbutiements de la mécanique quantique.
Le terme "incertitude" est le terme historique pour ce principe. Le nom de Théorème d'indétermination est parfois préféré car le principe ne porte pas sur l'ignorance "subjective" par l'expérimentateur de grandeurs, mais bien sur l'impossibilité de les déterminer, et même d'affirmer qu'une détermination plus précise existe. De plus, ce principe étant démontré par les équations, il devient un théorème.
Les travaux de Planck, Einstein et De Broglie avaient mis au jour que la nature quantique de la matière entraînait l'équivalence entre des propriétés ondulatoires (fréquence et vecteur d'onde) et corpusculaires (énergie et impulsion) selon les lois : et .
La dualité onde-corpuscule confirmée alors par de nombreuses expérimentations posait un problème de fond aux physiciens. En effet, pour posséder une fréquence et un vecteur d'onde, un objet doit avoir une certaine extension en espace et en temps. Un objet quantique ne peut donc être ni parfaitement localisé, ni avoir une énergie parfaitement définie.
De manière simplifiée, ce principe d'indétermination énonce donc que — de façon assez contre-intuitive du point de vue de la mécanique classique — pour une particule massive donnée, on ne peut pas connaître simultanément sa position et sa vitesse. Soit on peut connaître précisément sa position (par ex: à ± 1 mm) contre une grande incertitude sur la valeur de sa vitesse (par ex: à ± 100 m/s), soit on peut connaître précisément sa vitesse (par ex: à ± 0,0001 m/s) contre une grande incertitude sur la valeur de sa position (par ex: à ± 1 km).
Cependant, si on renonce à considérer la particule en tant qu'objet corpusculaire, l'énoncé de ce principe devient plus intuitif. L'objet quantique ayant une certaine extension dans l'espace et une certaine durée de vie en temps, on le représente alors, non plus par un ensemble de valeurs scalaires (position, vitesse), mais par une fonction décrivant sa distribution spatiale. Toute l'information relative à la particule est contenue dans cette fonction d'onde. Les mesures scalaires effectuées sur cette particule consistent à extraire seulement une partie de cette information, par l'intermédiaire d'opérateurs mathématiques.