Statistique de Maxwell-Boltzmann - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction


Mécanique quantique
 \hat H | \psi\rangle = i\hbar\frac{{\rm d}}{{\rm d}t}|\psi\rangle
Postulats de la mécanique quantique

Histoire de la mécanique quantique

Cette boîte : voir • disc. • mod.

La statistique de Maxwell-Boltzmann est une loi de probabilité ou distribution utilisée en physique statistique pour déterminer la répartition des particules entre différents niveaux d'énergie. Elle est notamment à la base de la théorie cinétique des gaz.

Énoncé

Formulation discrète

On se donne un système de N particules n'interagissant pas entre elles et pouvant prendre les différents états d'énergie discrets Ei. Le nombre Ni de particules dans un état d'énergie donné Ei est :

 N_i = \frac{N}{Z(T)}~ g_i e^{-\beta E_i} = \frac{N}{\sum_{j} g_j e^{-E_j/k_{B}T}}~ g_i e^{\frac{-E_i}{k_{B}T}}\,

  • gi est la dégénérescence de l'état d'énergie Ei, c'est-à-dire le nombre d'états possédant l'énergie Ei ;
  • kB est la constante de Boltzmann ;
  • T est la température du système (celui-ci doit donc être à l'équilibre) ;
  • \beta = \frac{1}{k_B T}
  • Z(T) est la fonction de partition du système.

Formulation continue

On considère un système de N particules sans interaction entre elles et pouvant prendre continûment tout état d'énergie entre zéro et l'infini. Le nombre dNE de particules possédant une énergie entre E et E + dE est :

\mathrm{d}N_E = \frac{N}{Z(T)}~ g(E)e^{-\beta E}\, \mathrm{d}E = \frac{N}{\int g(\varepsilon)\exp\left(-\varepsilon/k_{B}T\right) \mathrm{d}\varepsilon}~ g(E)e^{\frac{-E}{k_{B}T}} \, \mathrm{d}E ,

  • g(E) est la dégénérescence du système (densité de probabilité des états ayant une énergie comprise entre E et E + dE) ;
  • \beta = \frac{1}{k_B T}
  • Z(T) est la fonction de partition du système.

Applications

Biophysique

En neurosciences, on décrit souvent les mécanismes d'ouverture et de fermeture des Canaux ioniques par une fonction de Boltzmann simplifiée quand ceux-ci sont dépendants du potentiel de membrane. La formule utilisée est alors:

\frac{G(V)}{G_{max}}=\frac{1}{1+e^{\frac{V-V_{1/2}}{k_{B}}}} ,

  • V est le potentiel de membrane,
  • G(V) est la conductance ionique associée aux canaux, dépendante du potentiel de membrane,
  • Gmax est la conductance maximale,
  • V1/2 est le potentiel de membrane pour lequel la moitié des canaux sont ouverts,
  • k est la dépendance de l'ouverture des canaux par rapport au changement de potentiel, décrit dans la littérature comme étant la « constante de pente ».

La fonction de Boltzmann est ici utilisée pour décrire les résultats expérimentaux issus de la mesure patch-clamp des courants de membrane, et ainsi determiner les propriétés des différentes catégories de courants membranaires. Les paramètres V1/2 et k sont determinants pour la modélisation informatique des propriétés électriques d'une cellule nerveuse.

Page générée en 0.141 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise