Tangente vient du latin tangere, toucher : en géométrie, la tangente à une courbe en un de ses points est une droite qui « touche » la courbe au plus près au voisinage de ce point. La courbe et sa tangente forment alors un angle nul en ce point.
La notion de tangente permet d'effectuer des approximations : pour la résolution de certains problèmes qui demandent de connaître le comportement de la courbe au voisinage d'un point, on peut assimiler celle-ci à sa tangente. Ceci explique la parenté entre la notion de tangente et le calcul différentiel.
Se contenter comme on le fait parfois de définir la tangente comme une droite qui « touche la courbe sans la traverser » serait incorrect, puisque
L'homologue de la notion de tangente pour les surfaces est celle de plan tangent. Il peut être défini en considérant l'ensemble des courbes tracées sur la surface et passant par un point donné, et en considérant l'ensemble des tangentes obtenus. On peut ensuite généraliser à des objets de dimension plus grande que 2.
On commence par définir la droite sécante entre deux points M et N de la courbe : c'est la droite qui les relie. La tangente en M peut alors être définie comme la position limite de la sécante lorsque le point N tend vers M.
Pour être rendue parfaitement rigoureuse, cette définition demande d'introduire des notions de topologie permettant le calcul d'une telle limite. Elle est cependant très imagée.
En chacun de ses points le cercle admet une tangente. La tangente en M est la droite passant par M et perpendiculaire au rayon issu de M.
Les tangentes au cercle de centre O et de rayon R sont les droites situées à la distance R du point O. Ce sont aussi les droites qui coupent le cercle en exactement un point, mais il s'agit d'une propriété particulière au cercle. Maintenant, les droites sécantes:
Soient deux courbes C et C' passant par le même point M ; on suppose qu'elles ont toutes les deux des tangentes en ce point.
Pour déterminer la position d'une courbe par rapport à une tangente, il suffit de déterminer le signe de la différence, c'est-à-dire le signe de f(x)- y (y étant l'équation de la tangente). Si f(x) - y > 0 alors la courbe est au-dessus de la tangente et vice-versa...
Le graphe d'une fonction numérique dérivable est convexe si et seulement si la courbe est toujours au-dessus de ses tangentes. Il est concave si et seulement si la courbe est en dessous de ses tangentes.
Dans les cas qu'on rencontre en pratique, la courbe est alternativement concave ou convexe sur différents intervalles séparés par des points d'inflexion (pour lesquels la tangente traverse la courbe).
On peut étendre aux arcs paramétrés en cherchant les points d'inflexion et le sens dans lequel est tourné la concavité de la courbe. Un outil pour le savoir est le calcul du signe de la courbure.
On définit par exemple la notion de courbe fermée convexe, c'est-à-dire qui est toujours située d'un côté de ses tangentes. Pour une telle courbe, la courbure ne change pas de signe.
On se place dans le plan, et on va procéder à l'étude poussée d'un arc f au voisinage d'un de ses points a. On suppose que la première dérivée non nulle qui est celle d'ordre p, que la première dérivée non colinéaire à est celle d'ordre q. Il y a alors un repère judicieux pour effectuer l'étude :
Dans ce repère, l'arc prend la forme (X(t),Y(t)). On effectue alors le développement limité des fonctions X et Y
On retrouve des faits connus quand t tend vers 0 ou vers x : X et Y tendent vers 0 (continuité de la courbe), la pente Y/X tend vers 0 (la tangente est donnée par le premier vecteur de base). Mais en outre on a le signe de X et de Y pour t assez petit. Le signe de X nous dit si nous sommes en avant ou en arrière (par rapport au sens de ). Le signe de Y nous indique si nous sommes au-dessus ou au-dessous de la tangente.