Atmosphère de Jupiter - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Dynamique

La dynamique conférant à l'atmosphère de Jupiter une telle circulation atmosphérique est différente de celle de la Terre. L'intérieur de Jupiter est liquide et ne présente pas de surface solide. Donc, le phénomène de convection peut se produire partout dans l'enveloppe moléculaire extérieure de la planète. Aucune théorie extensive de la dynamique régissant l'atmosphère jovienne n'a été développée à ce jour. Une telle théorie a besoin d'expliquer les faits suivants: l'existence de bandes étroites stables et de courants-jets qui sont parallèle à l'équateur de Jupiter, le puissant courant-jet prograde de l'équateur de la planète, la différence entre « zones » et « bandes », et l'origine des grands vortex tels que la Grande tache rouge.

Les théories concernant les dynamiques de l'atmosphère jovienne peuvent être divisées en deux classes: le shallow (anglais pour « peu profond ») et le deep (anglais pour « profond »). Le premier considère que le circulation observée est confinée à la couche extérieure (temps) de la planète, et qu'elle cache un intérieur stable. La dernière postule que les courants atmosphériques observés ne sont que les manifestations de surface d'une circulation profondément enracinée dans l'enveloppe moléculaire extérieure de Jupiter. Puisque les deux théories ne peuvent tout expliquer, certains scientifiques considèrent que la bonne théorie inclurait des éléments des deux modèles.

"Shallow models"

Les premières tentatives visant à expliquer la dynamique de l'atmosphère jovienne datent des années 1960. Ces explications étaient fondées sur la météorologie terrestre, qui était déjà développée à l'époque. Ces shallow models (mots-à-mots ; « modèles peu profonds ») considéraient que les courants-jets sur Jupiter étaient déterminés par des turbulences de petite échelle, qui sont entretenus par la convection dans la couche extérieure de l'atmosphère (au-dessus des nuages composés d'eau). La convection est, ici, un phénomène lié à la condensation et à l'évaporation de l'eau et est l'un des moteurs principaux du temps terrestre. La production des courants-jets dans ce modèle est liée aux turbulences bidimensionnelles—la cascade inversée, dans laquelle de petits vortex fusionnent pour en former un plus grand. La taille finie de la planète signifie que ces cascades ne peuvent produire des structures dépassant une certaine échelle, qui, pour Jupiter, est appelée l'échelle Rhines. Son existence est liée à la production d'ondes de Rossby. Le processus est le suivant: quand la turbulence atteint une certaine taille, l'énergie commence à s'écouler dans une onde de Rossby au lieu de former une structure plus grande, et la cascade inversée s'arrête.

Bien que ces modèles de couches météorologiques peuvent expliquer avec succès l'existence d'une douzaine de courants-jets étroits, ils posent des problèmes sérieux. Un des échecs évidents du modèle est le courant-jet prograde équatorial (la super-rotation): avec quelques rares exceptions les shallow models produisent un fort courant-jet rétrograde (la sous-rotation), contrairement aux observations. De plus, les courants tendent à être instables et à disparaitre avec le temps. Les shallow models ne peuvent expliquer comment les flux atmosphériques observés sur Jupiter violent des critères de stabilité. Des versions à plusieurs couches plus élaborées produisent une circulation plus stable, mais beaucoup de problèmes persistent. En attendant, les données recueillies par la sonde Galileo ont permis de constater que les vents sur Jupiter s'étendent bien au-dessous des nuages composés d'eau à 5–7 bar et, qu'elles ne montrent pas de preuve d'affaiblissement en dessous du niveau des 22 bars de pression, ce qui implique que la circulation dans l'atmosphère jovienne peut être profonde.

"Deep models"

Le deep model (mots-à-mots : « modèle profond ») a été proposé par Busse en 1976. Son modèle était basé sur une caractéristique de la mécanique des fluides, le théorème de Taylor–Proudman. Il consiste au fait que, dans n'importe quelle fluide barotrope en rotation rapide, les flux sont organisés en une série de cylindres parallèles à l'axe de rotation. Les conditions nécessaires au théorème sont probablement remplies au sein de l'intérieur jovien fluide. Par conséquent, le manteau de dihydrogène de la planète peut être divisé en un certain nombre de cylindres, chacun ayant une circulation indépendante des autres. Ces latitudes où les frontières extérieures et intérieures des cylindres se coupent sur la surface visible de la planète correspondent aux courants-jets; les cylindres eux-mêmes sont observés comme des zones et des bandes.

Le deep model explique facilement le courant-jet prograde observé à l'équateur de Jupiter; les courants-jet qu'il produit sont stables et n'obéissent pas au critère de stabilité en deux dimensions. Cependant, ce modèle a des difficultés majeures; il produit un très petit nombre de larges courants-jets et les simulations réalistes des flux 3D ne sont pas encore possibles (en 2008), signifiant que les modèles simplifiés utilisés pour justifier la circulation profonde peuvent échouer à présenter les aspects importants de la mécanique des fluides au sein de Jupiter. Un modèle publié en 2004 a reproduit, avec succès, la structure ceinturée des courants joviens. Il partait du principe que le manteau de dihydrogène était plus fin que tous les autres modèles; occupant seulement les 10% les plus extérieures du rayon de Jupiter. Dans les modèles standard de l’intérieur jovien, le manteau inclut 20–30% de la partie extérieure de la planète. Le moteur permettant la circulation profonde est un autre problème. En fait, les flux profonds peuvent être causés par des forces peu profondes (la convection, par exemple) ou par une convection profonde et planétaire qui diffuse la chaleur hors de l'intérieur de Jupiter.

Page générée en 0.106 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise