Lorsque l'on enseigne la perspective à des étudiants en architecture, il faut non seulement leur apprendre à tracer convenablement les diverses vues qu'ils montreront à leurs clients, mais aussi leur montrer comment, à partir de documents à deux dimensions, il est possible de restituer la disposition des objets dans l'espace. Il faut connaître pour cela un nombre minimum de données géométriques, sans quoi rien n'est possible.
Ici, le jeu pourrait consister à retrouver la hauteur du tonnelet rouge, sachant que celle du tonnelet vert est de 9 cm et que les deux jouets sont posés sur un même plan horizontal. Il n'est pas gagné d'avance.
Sur les deux photos A et B, l'avant du tonnelet vert a la même hauteur ; sur la photo B, les deux tonnelets ont la même hauteur. Un point de vue plus ou moins éloigné modifie les dimensions relatives, mais ce n'est pas tout, il modifie aussi les formes : les cercles sont vus sous la forme d'ellipses beaucoup plus aplaties sur la photo B que sur la photo A.
Si l'on veut qu'une photographie restitue aussi complètement que possible la réalité, il faut l'examiner sous un angle identique à celui sous lequel le sujet était vu lors du déclenchement. Le tonnelet rouge a l'air un peu bizarre sur la photo A, qui retrouverait un aspect naturel si on l'examinait depuis une distance un peu inférieure à sa largeur, soit environ 9 cm sur un écran de 19 pouces. Il y a une justice pour les myopes. Pour avoir l'air naturelle, la photo B devrait être regardée d'une distance égale à environ deux fois sa diagonale, environ 25 cm sur le même écran. De très près, elle prend évidemment un allure bizarre et de très loin, elle donne l'impression que les deux tonnelets sont identiques mais posés à des hauteurs différentes.
Notre cerveau, en travaillant, finira par nous convaincre que le tonneau rouge est moins haut que le vert. En fait, il mesure 7 cm.
Le respect rigoureux de l'angle de prise de vue est souvent difficile, voire impossible. Imaginons un immeuble de 10 m de hauteur photographié depuis une distance de 150 m. Si, sur une photographie de format 20x30 cm, son image mesure 10 cm, alors la distance d'observation doit être également divisée par 100, ce qui donne 1,5 m. Le spectateur, n'ayant vraisemblablement pas les bras assez longs, devra poser la photo sur un support et prendre du recul. Si les photos ont été prises avec un téléobjectif puissant, il devra les regarder d'encore plus loin et, si elles ont été prises de très près avec un grand-angulaire extrême, il faudra qu'il y colle le nez.
Mieux : dans une salle où l'on projette des diapositives, tous les spectateurs devraient occuper le même siège et en changer à chaque fois que le photographe a changé de focale...
Mais que se passe-t-il dans la vie réelle ?
Appelons f la focale « normale » correspondant au format de l'image enregistrée (43 mm pour le 24x36, 85 mm pour le 6x6, etc.) et D la diagonale d'un agrandissement homothétique de cette image, sur papier ou sur écran. Le second grandissement sera bien sûr :
La focale réellement utilisée à la prise de vue peut être exprimée en fonction de la focale normale, la distance orthoscopique variera dans le même rapport en fonction de D :
Naturellement, si la distance orthoscopique n'est pas respectée, l'appréciation de la netteté se trouvera profondément modifiée et avec elle, la profondeur de champ apparente.
Un objectif de grande distance focale ne permet en aucun cas de s'approcher du sujet, en revanche il fournit une image plus grande que si l'on utilisait une focale « normale ».
Dans ce cas la photographie finale est généralement regardée de beaucoup trop près. Un agrandissement de 20x30 cm obtenu à partir d'un négatif de 24x36 mm (g' = 200/24) et d'un objectif de 300 mm devrait être regardé depuis une distance :
Cette distance est évidemment beaucoup plus grande que celle qui sera généralement observée dans la réalité. Le spectateur va se rapprocher de l'image et donc percevoir comme flous des détails qui, vus à la distance orthoscopique, apparaîtraient nets. Concrètement, si l'on se place à 50 cm au lieu de 2,5 m, il faudra être 5 fois plus exigeant sur la netteté et donc adopter comme limite angulaire non plus 1/1500 mais 1/7500, ce qui change beaucoup de choses.
On comprend mieux dès lors pourquoi un téléobjectif à la fois puissant, lumineux et surtout de bonne qualité dès la pleine ouverture atteint facilement le coût d'une petite voiture.
Un objectif grand-angulaire oblige à se tenir très près du sujet, sinon celui-ci n'occupe sur l'image qu'une place insignifiante. Nous parlons ici des véritables objectifs grand-angulaires, qui sont exempts de distorsion, et non des objectifs de type « fish-eye ». Sans grand risque d'erreur, nous pouvons déjà inverser toutes les propositions précédentes.
Un agrandissement de 24x36 cm réalisé d'après un négatif de 24x36 mm posé derrière un objectif de 17 mm doit normalement être observé à 17 cm au lieu des 45 ou 50 habituels. Il est évident que la photographie résultante sera presque toujours observée de trop loin.
Tout comme pour les téléobjectifs, les très bons grand-angulaires sont des pièces d'optique très onéreuses. Le problème pour les opticiens est de trouver des formules optiques permettant de corriger en même temps toute une série d'aberrations, sans créer de vignetage et en conservant une ouverture raisonnable.