Les rémanents sont aujourd'hui systématiquement catalogués avec le symbole SNR (pour l'anglais SuperNova Remnant), suivi de ses coordonnées galactiques. Divers autres noms sont attribués à certains rémanents, en particulier pour ceux qui ont été détectés avant d'être identifiés comme tels.
Les rémanents se forment suite à l'explosion d'une étoile en supernova. L'explosion n'est pas forcément sphérique, mais certains rémanents gardent longtemps une forme extrêmement régulière. L'influence d'une source d'énergie interne (un pulsar central) peut affecter significativement la forme et l'évolution du rémanent. Dans l'hypothèse de l'absence d'une source centrale, on distingue essentiellement quatre phases dans la vie d'un rémanent :
La transition entre la phase I et la phase II se fait lorsque le volume balayé par le rémanent correspond à une masse de milieu interstellaire de l'ordre de la masse éjectée, soit une masse solaire. Avec une densité typique du milieu interstellaire de l'ordre d'un atome d'hydrogène par centimètre cube, soit une densité de 1,6×10-21 kg/m3, cela se produit quand le rémanent atteint un rayon de l'ordre de 0,7×1017 mètres, soit une petite dizaine d'années-lumière. Avec une vitesse d'expansion alors égale à la vitesse initiale de 10 000 km/s, cela correspond à un âge de quelques milliers d'années.
Le volume balayé par le rémanent supposé sphérique et de rayon R(t)est
Ce volume correspond à une masse M dans un milieu de densité μ si
soit quand
La phase de Sedov Taylor proprement dite dure bien plus longtemps, estimée à quelques centaines de milliers d'années. Cela correspond à un facteur numérique près à la durée d'observabilité d'un rémanent, ceux-ci devenant difficilement observables quand leur énergie devient trop faible. Avec un taux de supernovæ de l'ordre d'une par siècle, l'on s'attend donc à un nombre de rémanents potentiellement observables de l'ordre de quelques milliers. Le nombre de rémanents effectivement identifiés comme tels étant significativement plus faible, pour diverses raisons explicitées ci-dessous.
Le milieu interstellaire étant loin d'être homogène, les rémanents ne sont pas nécessairement de forme sphérique : dès qu'ils entrent dans la phase de Sedov-Taylor, la vitesse d'expansion d'une région du rémanent est reliée à la densité du milieu interstellaire de cet endroit. Les rémanents 3C 58 et la Nébuleuse du Crabe sont des exemples de rémanents non sphériques.
La frontière entre le rémanent et le milieu interstellaire est appelée discontinuité de contact. Cette région est sujette à une instabilité dite « de Rayleigh-Taylor ». Cette instabilité génère de la turbulence à l'interface des deux régions, amplifiant le champ magnétique qui y est présent. Ce champ magnétique provoque en retour une émission radio (par rayonnement synchrotron entre autres). C'est la raison principale pour laquelle les rémanents en coquille présentent un maximum de luminosité à la frontière entre le rémanent et le milieu interstellaire. La situation inverse se produit dans les rémanents pleins, car le gros de l'émission d'énergie ne provient pas de la frontière du rémanent, mais du probable objet central (l'énergie du pulsar du Crabe correspond par exemple à près de 100 000 luminosité solaires).
En l'absence de source d'énergie centrale, l'expansion du rémanent décélère au cours du temps : la vitesse d'expansion reste constante lors de la phase I, puis décroît pendant la phase de Sedov Taylor. Dans ce cas, l'âge du rémanent est toujours inférieur à celui déduit en prenant l'inverse du taux d'expansion. En revanche, en présence d'une source centrale, l'apport d'énergie peut être suffisant pour accélérer l'expansion du rémanent. Dans ce cas, le rémanent peut être plus jeune que ce que son taux d'expansion ne suggère.