Série formelle - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Dérivation de séries formelles

Si f = ∑ an Xn est un élément de R[[X]], on définit sa dérivée formelle en utilisant l'opérateur D défini par

 Df = \sum_{n \ge 1} a_n n X^{n-1}

Cette opération est R-linéaire :

D(af + bg) = aDf + bDg

pour a, b dans R et f, g dans R[[X]].

Beaucoup de propriétés de la dérivation classique des fonctions sont valables pour la dérivation des séries formelles. Par exemple, la règle de dérivation d'un produit est valable :

D(fg) = f(Dg) + (Df)g

ainsi que la règle de dérivation d'une composée :

D(f(u)) = (Df)(u)Du

Dans un certain sens, toutes les séries formelles sont des séries de Taylor, car si f=∑an Xn, en écrivant Dk comme la ke dérivée formelle, on trouve que

(Dkf)(0) = k!ak.

On peut également définir la dérivation pour des séries formelles de Laurent d'une façon naturelle, et dans ce cas, la règle du quotient, en plus des règles énumérées ci-dessus, sera également valable.

Propriété universelle

L'anneau des séries formelles R[[X1, ..., Xr]] possède la propriété suivante :

  • Si S est une algèbre commutative et associative sur R
  • Si I est un idéal de S tel que S soit complet pour la topologie I-adique
  • Si x1, ..., xr sont r éléments de I,

Alors, il existe une unique application Φ : R[[X1, ..., Xr]] -> S vérifiant

  • Φ est un homomorphisme d'algèbre
  • Φ est continue
  • Φ(Xi) = xi pour tout i = 1, ..., r.

Applications

On peut utiliser des séries formelles pour prouver certaines propriétés en analyse de manière extrêmement simple.

Formules trigonométriques : Considérons les éléments suivants de Q[[X]]:

 \sin(X)  := \sum_{n \ge 0} \frac{(-1)^n} {(2n+1)!} X^{2n+1}
 \cos(X) := \sum_{n \ge 0} \frac{(-1)^n} {(2n)!} X^{2n}

Alors on peut montrer que

 \sin^2 + \cos^2 = 1\,

et

 D \sin = \cos\,

aussi bien que

 \sin (X+Y) = \sin(X) \cos(Y) + \cos(X) \sin(Y) \,

(La dernière expression étant définie sur l'anneau Q[[X,Y]]).

Détermination du terme général d'une suite : Comme exemple de la méthode de la fonction génératrice, considérons le problème consistant à trouver le terme général de la suite de Fibonacci fn définie par f0 = 0, f1 = 1, et fn = fn−1 + fn−2 pour n ≥ 2.

Dans l'anneau R[[X]], on définit la série formelle

 f = \sum_{n \ge 0} f_n X^n

f est appelée la fonction génératrice de la suite (fn). La fonction génératrice de la suite (fn−1) est Xf et celle de (fn−2) est X2f. D'après la relation de récurrence sur la suite (fn), nous pouvons écrire que Xf + X2f est identique à f sauf pour les deux premiers coefficients. On obtient alors la relation

 f = Xf + X^2 f + X \,

(C'est le point le plus important : une relation de récurrence sur une suite se traduit par une équation sur la fonction génératrice associée). Il suffit alors de résoudre l'équation précédente. On obtient :

 f = \frac{X} {1 - X - X^2}

Le dénominateur peut se factoriser en utilisant le nombre d'or et son conjugué

\phi_1=\frac{1+\sqrt{5}}{2} et \phi_2=\frac{1-\sqrt{5}}{2}

et la décomposition en éléments simples donne

 f = \frac{1 / \sqrt{5}} {1-\phi_1 X} - \frac{1/\sqrt{5}} {1- \phi_2 X}

On reconnaît, dans ces deux séries formelles, des séries géométriques. En identifiant leurs coefficients à celui de f, on obtient l'égalité suivante :

 f_n = \frac{1} {\sqrt{5}} (\phi_1^n - \phi_2^n)

Séries formelles généralisées

Soit R un anneau commutatif,

Soit G un groupe commutatif muni d'un ordre total compatible avec l'addition , c’est-à-dire tel que a < b équivaut à a + c < b + c pour tout c de G.

On considère l'ensemble des sous-ensembles I de G bien ordonnés, c'est-à-dire tels que I ne possède pas de chaine infinie décroissante.

On peut alors construire l'ensemble R((G)) des sommes

\sum_{i \in I} a_i X^i

ai sont des éléments de R et où on suppose que, pour chaque ensemble d'indexation I, si tous les ai sont nul alors la somme est nulle.

Alors R((G)) est l'anneau des séries formelles sur G, car la condition que l'ensemble d'indexation I soit bien ordonné assure que le produit est bien défini. On suppose évidemment que deux éléments qui diffèrent de zéro sont égaux.

Diverses propriétés de R peuvent se transférer à R((G).

Si R est un corps, il en est de même de R((G)).
Si R est un corps ordonné, on peut définir sur R((G)) une relation d'ordre en affectant à chaque série le signe de son coefficient dominant : le coefficient associé au plus petit i tel que ai soit non nul.
Si G est un groupe divisible et R un corps ordonné tel que R(i) (avec i2 = − 1) soit algébriquement clos alors il en est de même de R((G))
Enfin, si G est un groupe divisible et R un corps algébriquement clos alors il en est de même de R((G))

Cette théorie a été développée par le mathématicien autrichien Hans Hahn

Page générée en 0.102 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise