La prévention du symptôme passe par des mesures de radioprotection.
Dans les expériences et manipulations de matière fissile, le strict respect du protocole permet d'éviter l'assemblage involontaire d'une masse critique conduisant à un accident de criticité, comme ce fut le cas par négligence à Tokaimura au Japon (1999).
En cas d'incident, il convient d'éviter l'irradiation ou de minimiser le temps d'exposition, donc la dose reçue ; la surveillance du débit de dose radioactive sur les installations sensibles est essentielle afin que les personnels évitent de se rendre sur le lieu de l'incident et/ou se mettent à l'abri le plus rapidement possible. Le non-respect d'une telle mesure de sécurité a provoqué la mort d'un opérateur à Soreq en Israël (1986) qui a voulu vérifier de visu le signal contradictoire d'une alarme déclenchée et d'un système de sécurité indiquant une source radioactive correctement confinée.
Enfin, les sources radioactives doivent être strictement surveillées et confinées en dehors des périodes d'utilisation. Plusieurs cas mortels d'irradiation ont eu lieu à cause d'une déficience du système de confinement des sources dans des usines de stérilisation, parmi les plus récents à Soreq en Israël (1986) et à Niasviž en Biélorussie (1991). Il faut également veiller à ce qu'elles n'aboutissent pas entre les mains d'un public non averti, comme ce fut le cas à de nombreuses reprises lors de vols ou de pertes d'isotopes radioactifs sur des installations civiles ou militaires. Le dernier cas en date, en Géorgie (2001–2002) est le vol de sources de générateur thermoélectrique à radioisotope par un employé : sept personnes furent irradiées.
La Commission internationale de protection radiologique émet des recommandations concernant la radioprotection. Elles sont généralement reprises par les législations nationales.
L'Agence internationale de l'énergie atomique est une association affiliée à l'Organisation des Nations unies qui cherche à promouvoir les usages pacifiques de l'énergie nucléaire et à limiter le développement de ses applications militaires. Elle émet des rapports sur chaque accident nucléaire ou radiologique pour en tirer les conséquences en termes de sécurité et de protection civile.
décile | durée avant vomissement | |
---|---|---|
< 4 h | > 4h | |
25% | 2,5 | 0,5 |
50% | 3,6 | 0,9 |
75% | 6,0 | 1,7 |
Une estimation de la dose reçue est nécessaire pour connaître la prise en charge nécessaire ; les personnels sur des installations sensibles doivent porter à cette fin un dosimètre. En l'absence de mesure, la présence, la rapidité d'apparition et l'intensité des symptômes prodromaux, ainsi que la numération des lymphocytes dans les deux jours suivant l'irradiation permet de quantifier la gravité de l'exposition.
Des outils de diagnostic rapide ont été développés à des fins de sécurité civile afin de pouvoir effectuer un tri rapide des personnes. Ils sont destinés aux accidents à grande échelle, dans le cas où il s'avère impossible de faire rapidement un examen approfondi de l'ensemble des individus touchés. La durée moyenne t écoulée entre une exposition ponctuelle à des rayonnements gamma et le premier vomissement est relié à la dose reçue D par une loi de puissance :
Un critère simplifié est la présence de vomissements dans les quatre heures suivant l'exposition : trois quarts des personnes « positives » ont reçu plus de 2,5 Gy, impliquant un risque vital modéré à élevé ; elles doivent être suivies et examinées rapidement. Les patients « négatifs » ont reçu une dose inférieure à 1,7 Gy (impliquant un risque vital faible) dans 75% des cas et peuvent attendre quelques jours pour réexamen (voir tableau ci-contre).
concentration en lymphocytes (mm-3) | dose (Gy) |
---|---|
2500 | < 1 Gy |
1700–2500 | 1–5 Gy |
1200–1700 | 5–9 Gy |
< 1000 | > 10 Gy |
Un bilan sanguin établi dans les 8 à 48 heures après l'exposition permet d'établir un intervalle de dose reçue : la numération de lymphocytes diminue selon une loi exponentielle dont le temps de demi-atténuation est corrélé à la gravité de l'irradiation. Une lymphocytopénie de 1500 mm-3 ou moins dans les 48h suivant l'exposition indique une exposition à une dose moyenne de 3,1 Gy. Ces patients nécessiteront des soins médicaux. Une numération lymphocytaire dans les 8 à 12h permet d'obtenir un diagnostic plus précis (voir table ci-contre).
Il existe différents moyens de déterminer la dose par des examens biologiques, toutefois, ces méthodes sont ou bien onéreuses et coûteuses en main d'œuvre, ou bien en cours d'investigation. La mesure des anomalies au niveau chromosomique est coûteuse en termes d'argent et de main d'œuvre; la dosimétrie par mesure de l'apoptose des lymphocytes est encore expérimentale. La mesure du taux de radicaux libres ou de marqueurs biochimiques spécifiques est envisagée.
La mesure de la radioactivité induite chez les victimes d'une irradiation permet d'estimer la dose reçue. Si m est poids de l'individu en kilogrammes, K le nombre de coups par minute d'un compteur Geiger posé contre le ventre sujet, la dose radiative D en gray est donnée par :
La relation est calibrée pour un rayonnement de neutrons et/ou de photons gamma.
La mesure du taux de phosphore 32 dans les cheveux ou de sodium 24 dans le sang permet d'estimer la dose de neutrons reçue.
Il n'existe pas de traitement éprouvé des conséquences d'une irradiation (des causes des symptômes), mais un traitement symptomatique permet de diminuer la mortalité le temps que les tissus se régénèrent ou qu'une greffe soit effectuée.
Les connaissances sur la physiopathologie des irradiations accidentelles ont beaucoup progressé au cours de ces dernières années. On est ainsi passé du paradigme classique de défaillance radioinduite d’un organe cible unique (moelle osseuse ou système gastro-intestinal ou système nerveux central) au concept de défaillance multi-organes impliquant les 3 systèmes précédents ainsi que la peau, le poumon, le foie et le rein. Ce changement de paradigme a de très grandes conséquences. La gestion médicale devient plus complexe, le patient irradié ne devant plus être pris en charge uniquement par des spécialistes d’hématologie mais par une équipe pluridisciplinaire rassemblant les grandes spécialités de la médecine, et ce dès l’évènement initial. Toute la stratégie thérapeutique à mettre en œuvre s’en trouve modifiée.
Un consensus international sur le traitement de l’irradiation accidentelle se dégage au début du XXI° siècle, au moins sur le plan européen. Le nouveau concept physiopathologique de la défaillance multi-organes propose que la greffe de moelle ne soit pas pratiquée en urgence comme cela a souvent été le cas dans le passé, mais soit systématiquement différée de 2 à 3 semaines après l’accident dans l’attente de la vérification du caractère définitif et irréversible des dommages radioinduits à la moelle osseuse et en l’absence de signes cliniques d’apparition d’une défaillance multiple des organes. Si l’exposition est hétérogène, la greffe de moelle est par nature contre-indiquée et il faut recourir à une stimulation par des facteurs de croissance de la moelle osseuse présente dans les territoires les moins irradiés.
Le traitement des blessures (brûlures, traumatisme) est prioritaire sur celui de l'irradiation. Il convient de décontaminer en cas de contact, d'ingestion de radioéléments.
En cas d'accident impliquant la population civile, un suivi psychologique est nécessaire et certaines personnes développent des symptômes caractéristiques du syndrome d'irradiation aiguë sans avoir été exposées, un effet placebo observé chez près de 5000 personnes lors de l'accident radiologique de Goiâna au Brésil, 1987.
Les vomissements peuvent être traités avec des anti-vomitifs comme les inhibiteurs des récepteurs de la sérotonine.
L'hospitalisation n'est généralement nécessaire que pour une dose supérieure à 2 Gy, le risque d'infections nécessite un placement en milieu stérile. Dans les autres cas, les soins peuvent être prodigués à domicile. Le traitement du syndrome hématopoïétique fait intervenir la prophylaxie et le soin des infections à l'aide d'antibiotiques, d'antiviraux et d'antifongiques. La transfusion sanguine et celle de plaquettes permet de réduire les risques hémorragiques et de lutter contre la lymphocytopénie.
La stimulation de l'hématopoïèse à l'aide de facteurs de croissance permet d'augmenter les chances de survie, les cytokines qui n'ont toutefois pas reçu l'aval de la Food and Drug Administration pour les cas d'irradiation. La greffe de moelle osseuse, de son côté, est d'efficacité et d'emploi limités : pour des doses modérées les cellules hématopoïétiques ne sont pas totalement détruites et repeuplent spontanément la moelle en cas de survie, et l'impact positif de la transplantation n'est clairement établi que de la part d'un jumeau monozygote.
Un médicament expérimental destiné à traiter spécifiquement les effets d'une irradiation aiguë, le Neumune, est développé conjointement par l'industrie pharmaceutique et l'armée américaine. Testé chez le singe, il diminuerait la thrombocytopénie et l'anémie résultant d'une exposition à des doses modérées et augmenterait les chances de survie à une forte irradiation.
Ces formes du syndrome d'irradiation aiguë conduisent à une mort certaine. Les patients nécessitent un traitement palliatif. Des soins symptomatiques peuvent prolonger la durée de vie. Les forces armées se sont intéressées à des traitements symptomatiques dans les premières heures d'une irradiation élevée (20-50 Gy) afin de permettre aux troupes touchée d'être aptes au combat pendant une période limitée.