DC-XA - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Concept

Le Delta Clipper Advanced

Le DC-X n'a jamais été conçu pour atteindre une altitude orbitale ou une grande vitesse, mais plutôt à démontrer le concept de décollage et d'atterrissage à la verticale. Le concept de décollage et d'atterrissage à la verticale était populaire dans la science-fiction des années 1950 (Rocketship XM, Destination... Lune !, Objectif Lune, etc.), mais n'existait pas dans les conceptions du monde réel. Il décolle verticalement comme une fusée standard, mais atterrit aussi à la verticale, pointe en haut. Cette conception utilise des propulseurs de contrôle d'attitude et des rétrofusées pour contrôler la descente, l'engin commence à redescendre le nez en avant, puis se retourne et se pose sur les montants d'atterrissage à la base. L'engin peut être ravitaillé en carburant là où il a atterri, et prendre un nouvel envol à partir de la même position - une caractéristique permettant des délais entre utilisations sans précédent.

En théorie, une rentrée « pointe en l'air » serait plus facile à réaliser. La base de l'engin ayant déjà besoin d'un certain niveau de protection pour supporter la chaleur dégagée par les propulseurs, ajouter un bouclier serait assez facile à concevoir. Plus important encore, la base de l'engin est beaucoup plus grande que la zone du nez, ce qui conduit à des pics de températures inférieurs puisque la charge de chaleur est répartie sur une zone plus vaste. Enfin, ce profil ne nécessite pas que le vaisseau spatial se retourne pour l'atterrissage.

La fonction militaire de l'engin a rendu cela impossible. Une exigence de sécurité voulue pour les engins spatiaux est la capacité à abandonner une mission, c'est-à-dire atterrir, après seulement une orbite. Une orbite basse typique prend environ 90 à 120 minutes, la Terre tournera vers l'est d'environ 20 à 30 degrés pendant cette période, soit pour un lancement à partir du sud des États-Unis, d'environ 1 500 miles (2 400 km). Si l'engin est lancé vers l'est ce n'est pas un problème, mais pour les orbites polaires requise pour les satellites militaires, lorsque l'orbite est complétée, l'engin survole un point loin à l'ouest du site de lancement. Afin de retourner au site de lancement, l'engin doit avoir une grande maniabilité, ce qui est difficile à gérer avec une grande surface lisse. La conception du Delta Clipper utilise donc un nez de rentrée à faces planes sur le fuselage et de grands volets (« flaps ») pour contrôler sa trajectoire et sa descente. L'expérience d'une telle rentrée, élément majeur du projet, n'a jamais été tentée.

Un autre objectif du projet DC-X était de réduire au minimum l'entretien et le soutien au sol. À cette fin, l'opération était fortement automatisée et ne nécessitait que trois personnes au centre de contrôle (deux pour les opérations de vol et l'autre pour le soutien au sol). D'une certaine manière le projet DC-X a moins porté sur la recherche technologique que sur les opérations.

L'avenir du DC-X

Plusieurs ingénieurs ayant travaillé sur le DC-X ont depuis été embauché par Blue Origin. Leur véhicule New Shepard, un programme de vol suborbital basé sur le design DC-X, ne nécessite pas les performances du DC-X et utilise un principe de rentrée « debout ». En outre, le DC-X est une source d'inspiration pour de nombreux éléments des engins spatiaux d'Armadillo Aerospace, de Masten Space Systems, et de Rockets TGV.

Le retour de la conception du DC-X au portefeuille de recherche active de la NASA a été considéré depuis un certain temps maintenant. Certains ingénieurs de la NASA estiment que le DC-X pourrait constituer une solution pour l'atterrissage d'un équipage sur Mars. Si un vaisseau spatial de type DC fonctionnant en gravité terrestre, même avec seulement une capacité limitée à un équipage de 4 à 6 personnes, pouvait être mis au point, les variantes de celui-ci pourraient se révéler viables pour des missions sur Mars ou sur la Lune. Le programme d'une telle variante devrait être inversé : du décollage/atterrissage à un atterrissage d'abord, puis décollage.

Quelques modifications de conception proposées comprennent l'utilisation d'une combinaison oxydant/combustibles qui ne nécessite pas le soutien au sol relativement important requis pour les ergols classiques (hydrogène liquide et oxygène liquide), et ajouter un cinquième pied pour une meilleure stabilité pendant et après l'atterrissage. Récemment, le programme Centennial Challenges de la NASA a annoncé un Northrop Grumman Lunar Lander Challenge suborbital, prix pour la première équipe à construire une fusée à décollage et atterrissage vertical (Vertical Takeoff, Vertical Landing ou VTVL) qui ait la même Delta-v qu'un véhicule capable d'atterrir sur la lune et l'exploiter dans des conditions de concurrence.

Page générée en 0.126 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise