Vecteur
Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Approche algébrique

Coordonnées et vecteurs colonnes

Dans un plan, deux vecteurs \scriptstyle \vec{a} et \scriptstyle \vec{b} non nuls et de directions différentes possèdent une propriété importante. Un vecteur \scriptstyle \vec{u} quelconque est somme d'un multiple de \scriptstyle \vec{a} et \scriptstyle \vec{b}. Cela signifie qu'il existe deux uniques nombres u1 et u2 tel que :

\vec{u} = u_1 \vec{a} + u_2 \vec{b}\;

\scriptstyle \vec{u} est alors qualifié de combinaison (Une combinaison peut être :) linéaire de \scriptstyle \vec{a} et \scriptstyle \vec{b}. Comme tout (Le tout compris comme ensemble de ce qui existe est souvent interprété comme le monde ou l'univers.) vecteur (En mathématiques, un vecteur est un élément d'un espace vectoriel, ce qui permet d'effectuer des opérations d'addition et de multiplication par un scalaire. Un n-uplet peut...) du plan s'exprime de manière unique comme combinaison linéaire de \scriptstyle \vec{a} et \scriptstyle \vec{b}, la famille (\scriptstyle \vec{a}, \scriptstyle \vec{b}) est qualifiée de base du plan et u1, u2 sont appelés composantes du vecteur \scriptstyle \vec{u} dans cette base. Cette définition (Une définition est un discours qui dit ce qu'est une chose ou ce que signifie un nom. D'où la division entre les définitions réelles et les définitions nominales.) correspond à celle d'un plan affine (En mathématiques, affine peut correspondre à :) muni d'un repère. Une telle propriété est encore vraie dans l'espace. Cependant, deux vecteurs ne suffisent plus, toute base contient exactement trois vecteurs non nuls et dont les directions ne sont pas coplanaires (c'est-à-dire qu'il n'existe aucun plan contenant les trois directions). Si dans l'espace, les trois composantes d'un vecteur \scriptstyle \vec{u} sont u1, u2 et u3, il est d'usage (L’usage est l'action de se servir de quelque chose.) de noter :

\vec{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}

pour indiquer les composantes du vecteur. Le tableau (Tableau peut avoir plusieurs sens suivant le contexte employé :) est appelé vecteur-colonne et correspond à un cas particulier de matrice. Les opérations algébriques sur les vecteurs sont simples, avec une telle représentation. Additionner deux vecteurs revient à additionner chacune des composantes et la multiplication (La multiplication est l'une des quatre opérations de l'arithmétique élémentaire avec l'addition, la soustraction et la division .) par un scalaire (Un vrai scalaire est un nombre qui est indépendant du choix de la base choisie pour exprimer les vecteurs, par opposition à un pseudoscalaire, qui est un nombre qui peut dépendre de la base.) revient à multiplier chaque composante par le scalaire.

Dans un plan vectoriel, un vecteur s'identifie à un couple de scalaires, et dans l'espace à un triplet. Si les nombres choisis sont réels alors un plan (respectivement un espace) s'identifie à R2 (respectivement à R3). Ici, R désigne l'ensemble (En théorie des ensembles, un ensemble désigne intuitivement une collection d’objets (les éléments de l'ensemble), « une multitude qui peut être comprise comme un...) des nombres réels.

Ébauche d'une construction algébrique

La logique (La logique (du grec logikê, dérivé de logos (λόγος), terme inventé par Xénocrate signifiant à la fois raison, langage, et raisonnement) est dans une...) précédente, appliquée pour une dimension (Dans le sens commun, la notion de dimension renvoie à la taille ; les dimensions d'une pièce sont sa longueur, sa largeur et sa profondeur/son épaisseur, ou bien son diamètre si c'est une...) égale à deux ou trois se généralise. Il est ainsi possible de considérer la structure Rn où de manière plus générale Kn avec K un ensemble de scalaires possédant de bonnes propriétés (précisément, K est un corps commutatif). Une telle structure possède une addition (L'addition est une opération élémentaire, permettant notamment de décrire la réunion de quantités ou l'adjonction de grandeurs extensives de même nature, comme les longueurs, les...), et une multiplication par un scalaire définies comme au paragraphe précédent.

Il est possible de généraliser encore la définition d'un vecteur. Si un ensemble E possède une addition et une multiplication scalaire sur un corps commutatif et si ses opérations vérifient certaines propriétés, appelées axiomes et décrites dans l'article détaillé, alors E est appelé espace vectoriel et un élément de E vecteur.

De très nombreux exemples d'ensembles mathématiquement intéressants possèdent une telle structure. C’est le cas par exemple des espaces de polynômes, de fonctions vérifiant certaines propriétés de régularité, de matrices... Tous ces ensembles peuvent alors être étudiés avec les outils du calcul vectoriel et de l'algèbre linéaire (L’algèbre linéaire est la branche des mathématiques qui s'intéresse à l'étude des espaces vectoriels (ou espaces linéaires), de leurs éléments les vecteurs, des transformations linéaires et des...).

La notion de dimension fournit le premier résultat de classification concernant les espaces vectoriels. Dans un espace vectoriel de dimension finie n, il est possible, moyennant le choix d'une base, de se ramener au calcul sur des vecteurs colonnes de taille n. Il existe également des espaces vectoriels de dimension infinie. L'ensemble des fonctions de R dans R est ainsi un espace vectoriel sur le corps des nombres réels, de dimension infinie. Vue (La vue est le sens qui permet d'observer et d'analyser l'environnement par la réception et l'interprétation des rayonnements lumineux.) sous cet angle (En géométrie, la notion générale d'angle se décline en plusieurs concepts apparentés.), une telle fonction est un vecteur.

Construction algébrique et géométrie (La géométrie est la partie des mathématiques qui étudie les figures de l'espace de dimension 3 (géométrie euclidienne) et, depuis le XVIIIe siècle, les...)

Si les deux constructions, algébrique et géométrique sont équivalentes pour les structures vectorielles du plan et de l'espace usuel, la géométrie apporte en plus les notions de distance et d'angle.

La notion de produit scalaire (En géométrie vectorielle, le produit scalaire est une opération algébrique s'ajoutant aux lois définissant la structure d'espace vectoriel. À deux vecteurs elle associe leur produit, qui est un nombre (ou scalaire). Elle permet de...) permet de combler cette lacune. Un produit scalaire associe à deux vecteurs un réel. Si les deux vecteurs sont identiques le réel est positif. Il existe un produit scalaire tel que la norme (Une norme, du latin norma (« équerre, règle ») désigne un état habituellement répandu ou moyen...) du vecteur soit égale à la racine carrée (La racine carrée d’un nombre réel positif x est le nombre positif dont le carré vaut x. On le note ou x½; dans cette expression, x est appelé le radicande.) du produit scalaire du vecteur avec lui-même. La géométrie euclidienne (La géométrie euclidienne commence avec les Éléments d'Euclide, qui est à la fois une somme des connaissances géométriques de l'époque et une tentative de formalisation mathématique de ces connaissances. Les notions de droite, de...) apparait alors comme l'étude d'un espace affine (Historiquement, la notion d’espace affine est issue du choc dû à la découverte de nouvelles géométries parfaitement cohérentes, mais différant...) comprenant un espace vectoriel de dimension deux ou trois sur le corps des réels, muni d'un produit scalaire : plan affine euclidien ou espace affine euclidien.

Une fois équipée d'un produit scalaire, il devient possible de définir sur l'espace vectoriel des transformations classiques de géométrie euclidienne comme la symétrie, la rotation ou la projection (La projection cartographique est un ensemble de techniques permettant de représenter la surface de la Terre dans son ensemble ou en partie sur la surface plane d'une carte.) orthogonale. La transformation associée aux espaces vectoriels laisse toujours invariant le vecteur nul. Les rotations permettent de définir la notion d'angle pour les vecteurs. L'angle \scriptstyle (\widehat{\vec{u},\vec{v}}) est égal à \scriptstyle (\widehat{\vec{u'},\vec{v'}}) si et seulement s'il existe une rotation qui envoie \scriptstyle \vec{u} sur \scriptstyle \vec{u'} et \scriptstyle \vec{v} sur \scriptstyle \vec{v'}. Cette définition, qui s'applique à une formalisation algébrique de la notion d'espace vectoriel, est équivalente à celle de la construction géométrique. Une telle approche simplifie parfois grandement les démonstrations, un exemple est le théorème de Pythagore (Le théorème de Pythagore est un théorème de géométrie euclidienne qui énonce que dans un triangle rectangle (qui possède un angle droit) le carré de l'hypoténuse (côté opposé à l'angle droit) est égal à la somme des carrés...).

L'approche algébrique permet de définir toutes les notions de la géométrie euclidienne, elle généralise cette géométrie à une dimension quelconque si les nombres sont réels. Dans le cas des nombres complexes une construction analogue, appelée espace hermitien (Plusieurs entités mathématiques sont qualifiées d'hermitiennes en référence au mathématicien Charles Hermite.), existe.

Page générée en 0.230 seconde(s) - site hébergé chez Amen
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
Ce site est édité par Techno-Science.net - A propos - Informations légales
Partenaire: HD-Numérique