L'adimensionnement (parfois appelé aussi dédimensionnement) est la suppression partielle ou totale des unités d'une équation par une substitution appropriée de variables, dans le but de simplifier la représentation paramétrique de problèmes physiques. Elle est étroitement reliée à l'analyse dimensionnelle. L'adimensionnement ne doit pas être confondu avec la conversion de paramètres extensifs d'une équation en paramètres intensifs, car cette dernière procédure conduit toujours à des variables auxquelles des unités sont attachées.
L'adimensionnement permet aussi de retrouver les propriétés caractéristiques d'un système. Par exemple, si un système possède une fréquence de résonance intrinsèque, une longueur, ou une constante de temps, l'adimensionnement permet de retrouver ces valeurs. La technique est particulièrement utile pour les systèmes qui peuvent être décrits par des équations différentielles.
On peut trouver de nombreux exemples explicatifs d'adimensionnement dans la simplification d'équations différentielles. En effet, un grand nombre de problèmes physiques peuvent être formulés sous cette forme, et l'adimensionnement est bien adapté à leur traitement. Cependant, il permet aussi de traiter d'autres types de problèmes sortant du champ des équations différentielles, comme l'analyse dimensionnelle.
On trouve des exemples d'adimensionnement dans la vie courante : les instruments de mesure en constituent un exemple. Les instruments de mesure font en effet l'objet d'un étalonnage par rapport à une unité particulière connue, préalablement à leur utilisation ; on applique ensuite une transformation (normalisation) aux mesures effectuées de façon à les obtenir dans cette unité, la démarche inverse permettant de retrouver la valeur réelle d'une mesure à partir de la valeur normalisée correspondante.
Supposons qu'un pendule oscille selon une période T. Il peut être avantageux, pour étudier un tel système oscillant, de le faire relativement à cette période T. On peut considérer cette opération comme une sorte de normalisation de la mesure par rapport à la période.
Les mesures effectuées relativement à une propriété intrinsèque d'un système s'appliqueront à d'autres systèmes qui possèdent la même propriété intrinsèque. Cela permet aussi de comparer une propriété commune à différentes mises en œuvre du même système. L'adimensionnement détermine de façon systématique les unités caractéristiques d'un système, sans qu'il soit nécessaire de connaître précisément les propriétés intrinsèques de celui-ci. En fait, l'adimensionnement peut suggérer les paramètres qui devraient être utilisés pour analyser un système ; il est cependant nécessaire de partir d'une équation le décrivant de façon appropriée.
Considérons l'équation différentielle pour un système du premier ordre :
La dérivation des unités caractéristiques donne
Un système du second ordre est de la forme
Remplaçons les variables x et t par leurs homologues sans dimension. L'équation devient
Cette nouvelle équation n'est pas sans dimension, bien que toutes les variables avec unités sont isolées dans les coefficients. En divisant par le coefficient du terme de plus grand ordre, l'équation devient
Il est ensuite nécessaire de déterminer les quantités de xc et tc de telle sorte que les coefficients deviennent normalisés. Comme il existe deux paramètres libres, on ne peut rendre égaux à un que deux coefficients au maximum.
Considérons la variable tc :
Les deux substitutions sont valides. Cependant, pour de raisons pédagogiques, la dernière substitution est utilisée pour les systèmes du second ordre. Choisir cette substitution permet à xc d'être déterminé par la normalisation du coefficient de la fonction de forçage :
L'équation différentielle devient
Le coefficient du terme du premier ordre est sans unité. Définissons
La présence du facteur 2 permet de paramétrer les solutions en fonction de ζ. Dans le contexte de systèmes mécaniques ou électriques, ζ est connu comme le taux d'amortissement, et est un paramètre important nécessaire à l'analyse des systèmes de contrôle. Le résultat de la définition est l'équation différentielle de l'oscillateur harmonique :
L'équation différentielle linéaire d'ordre n à coefficients constants s'écrit, sous sa forme générale :
La fonction f(t) est connue sous le nom de fonction de forçage.
Si l'équation différentielle contient uniquement des coefficients réels (aucun coefficient complexe), alors un tel système se comporte comme une combinaison de systèmes du premier et du deuxième ordre uniquement. Ceci est dû au fait que les racines de son polynôme caractéristique sont, soit réelles, soit des paires de complexes conjugués. Ainsi, comprendre comment l'adimensionnement s'applique aux systèmes du premier et du second ordre permet de déterminer les propriétés des systèmes d'ordre plus élevé par utilisation du principe de superposition.
Le nombre de paramètres libres dans une forme adimensionnée d'un système augmente avec son ordre. Pour cette raison, l'adimensionnement est rarement utilisé pour des équations différentielles d'ordre élevé. L'apparition du calcul formel a également réduit la nécessité de cette procédure.
Il est possible de représenter divers systèmes physiques de façon approchée au moyen de systèmes du premier ou du second ordre. C'est le cas notamment des systèmes mécaniques, électriques, fluides, thermiques et torsionnels. En effet, les quantités physiques fondamentales impliquées dans chacun de ces exemples sont liées par des dérivées du premier et du second ordre.
Supposons une masse attachée à un ressort et à un amortisseur, eux-mêmes attachées à un mur, et une force agissant sur la masse selon la même ligne.
Define
Supposons que la force appliquée est une sinusoïde F = F0 cos(ωt) ; l'équation différentielle qui décrit le mouvement du bloc est alors :
L'adimensionnement de cette équation selon la méthode décrite dans la rubrique système du second ordre ci-dessus fournit plusieurs caractéristiques du système.
L'unité intrinsèque xc correspond à la distance dont le bloc se déplace par unité de force
La variable caractéristique tc est égale à la période des oscillations
et la variable sans dimension 2ζ correspond à la largeur de bande du système. ζ lui-même est le taux d'amortissement.
Pour un circuit RC série relié à une alimentation électrique
soit après substitutions
la première unité caractéristique correspond à la charge électrique totale dans le circuit. La seconde unité caractéristique correspond à la constante de temps du système.
Pour une configuration série de composants R, C, L où Q est la charge dans le système
soit après substitutions
La première variable correspond à la charge maximum stockée dans le circuit. La fréquence de résonance est donnée par l'inverse du temps caractéristique. La dernière expression est la largeur de bande du système. Ω peut être considéré comme fréquence de la fonction de forçage normalisée.