Big Bang

Preuves observationnelles

Vision d’artiste du satellite WMAP collectant les données afin d’aider les scientifiques à comprendre le Big Bang

Deux preuves observationnelles décisives ont définitivement donné raison aux modèles de Big Bang : il s’agit de la détection du fond diffus cosmologique (Le fond diffus cosmologique est un rayonnement électromagnétique provenant de l'Univers, et qui frappe la Terre de façon quasi uniforme dans toutes les directions.), rayonnement (Le rayonnement, synonyme de radiation en physique, désigne le processus d'émission ou de transmission d'énergie impliquant une particule porteuse.) de basse énergie (Dans le sens commun l'énergie désigne tout ce qui permet d'effectuer un travail, fabriquer de la chaleur, de la lumière, de produire un mouvement.) (domaine micro-onde) vestige de l’époque chaude de l’histoire de l’univers, et la mesure de l’abondance des éléments légers, c’est-à-dire des abondances relatives de différents isotopes de l’hydrogène, de l’hélium et du lithium (Le lithium est un élément chimique, de symbole Li et de numéro atomique 3.) qui se sont formés pendant la phase (Le mot phase peut avoir plusieurs significations, il employé dans plusieurs domaines et principalement en physique :) chaude primordiale.

Ces deux observations (L’observation est l’action de suivi attentif des phénomènes, sans volonté de les modifier, à l’aide de moyens d’enquête et d’étude appropriés. Le...) remontent au début de la seconde ( Seconde est le féminin de l'adjectif second, qui vient immédiatement après le premier ou qui s'ajoute à quelque chose de nature identique. La seconde est une unité de mesure du temps. La seconde d'arc est une...) moitié du XXe siècle, et ont définitivement assis le Big Bang (Le Big Bang est l’époque dense et chaude qu’a connu l’univers il y a environ 13,7 milliards d’années, ainsi que l’ensemble des modèles...) comme le modèle décrivant l’univers observable (Dans le formalisme de la mécanique quantique, une opération de mesure (c'est-à-dire obtenir la valeur ou un intervalle de valeurs d'un paramètre physique, ou plus généralement une information sur un système...). Outre la cohérence quasi-parfaite du modèle avec tout (Le tout compris comme ensemble de ce qui existe est souvent interprété comme le monde ou l'univers.) un autre ensemble (En théorie des ensembles, un ensemble désigne intuitivement une collection d’objets (les éléments de l'ensemble), « une multitude qui peut être...) d’observations cosmologiques effectuées depuis, d’autres preuves relativement directes sont venues s’ajouter : l’observation de l’évolution des populations galactiques, et la mesure du refroidissement du fond diffus cosmologique depuis plusieurs milliards d’années.

Le fond diffus cosmologique

Le fond diffus cosmologique, découvert en 1965 est le témoin le plus direct du Big Bang. Depuis, ses fluctuations ont été étudiées par les sondes spatiales COBE (1992) et WMAP (2003).

L’expansion induit (L'induit est un organe généralement électromagnétique utilisé en électrotechnique chargé de recevoir l'induction de l'inducteur et de la transformer en...) naturellement que l’univers a été plus dense par le passé (Le passé est d'abord un concept lié au temps : il est constitué de l'ensemble des configurations successives du monde et s'oppose au futur sur une échelle des temps centrée sur le présent. L'intuition du...). À l’instar d’un gaz (Un gaz est un ensemble d'atomes ou de molécules très faiblement liés et quasi-indépendants. Dans l’état gazeux, la...) qui s’échauffe quand on le comprime, l’univers devait aussi être plus chaud par le passé. Cette possibilité semble évoquée pour la première fois en 1934 par Georges Lemaître, mais n’est réellement étudiée qu’à partir des années 1940. Selon l’étude de George Gamow (entre autres), l’univers doit être empli d’un rayonnement qui perd de l’énergie du fait de l’expansion, selon un processus semblable à celui du décalage vers le rouge (Le décalage vers le rouge ou redshift est un phénomène astronomique de décalage vers les grandes longueurs d'onde des raies spectrales et de l'ensemble du spectre...) du rayonnement des objets astrophysiques distants.

Gamow réalise en effet que les fortes densités de l’univers primordial doivent avoir permis l’instauration d’un équilibre thermique (La thermique est la science qui traite de la production d'énergie, de l'utilisation de l'énergie pour la production de chaleur ou de froid, et des transferts...) entre les atomes (Un atome (du grec ατομος, atomos, « que l'on ne peut diviser ») est la plus petite partie d'un corps simple pouvant se...), et par suite l’existence d’un rayonnement émis par ceux-ci. Ce rayonnement devait être d’autant plus intense que l’univers était dense, et devait donc encore exister aujourd’hui, bien que considérablement moins intense. Gamow fut le premier (avec Ralph Alpher et Robert C. Herman) à réaliser que la température (La température est une grandeur physique mesurée à l'aide d'un thermomètre et étudiée en thermométrie. Dans la vie courante,...) actuelle de ce rayonnement pouvait être calculée à partir de la connaissance de l’âge de l’univers, la densité (La densité ou densité relative d'un corps est le rapport de sa masse volumique à la masse volumique d'un corps pris comme référence. Le corps de...) de matière (La matière est la substance qui compose tout corps ayant une réalité tangible. Ses trois états les plus communs sont l'état solide, l'état liquide, l'état gazeux. La...), et l’abondance d’hélium.

Ce rayonnement est appelé aujourd’hui fond diffus cosmologique, ou parfois rayonnement fossile (Un fossile (dérivé du substantif du verbe latin fodere : fossile, littéralement « qui est fouillé ») est le reste (coquille, os,...). Il correspond à un rayonnement de corps noir (En physique, un corps noir désigne un objet idéal dont le spectre électromagnétique ne dépend que de sa température. En pratique, un tel objet matériel n'existe pas, mais il représente un cas idéalisé servant...) à basse température (2,7 kelvins), conformément aux prédictions de Gamow. Sa découverte, quelque peu fortuite, est due à Arno Allan Penzias et Robert Woodrow Wilson en 1965, qui seront récompensés par le Prix Nobel de physique (Le prix Nobel de physique est une récompense gérée par la Fondation Nobel, selon les dernières volontés du testament du chimiste Alfred Nobel. Il récompense des figures...) en 1978.

L’existence d’un rayonnement de corps noir est facile à expliquer dans le cadre du modèle du Big Bang : par le passé, l’univers est très chaud et baigne dans un rayonnement intense. Sa densité, très élevée, fait que les interactions entre matière et rayonnement sont très nombreuses, ce qui a pour conséquence que le rayonnement est thermalisé, c’est-à-dire que son spectre électromagnétique (Le spectre électromagnétique est la décomposition du rayonnement électromagnétique selon ses différentes composantes en terme de fréquence, d'énergie des photons ou encore de longueur d'onde associée, les trois grandeurs ν...) est celui d’un corps noir. L’existence d’un tel rayonnement dans la théorie (Le mot théorie vient du mot grec theorein, qui signifie « contempler, observer, examiner ». Dans le langage courant, une théorie est une idée ou une connaissance spéculative, souvent basée sur l’observation...) de l’état stationnaire est par contre quasiment impossible à justifier (bien que ses rares tenants affirment le contraire).

Bien que correspondant à un rayonnement à basse température et peu énergétique, le fond diffus cosmologique n’en demeure pas moins la plus grande forme d’énergie électromagnétique de l’univers : près de 96 % de l’énergie existant sous forme de photons (En physique des particules, le photon est la particule élémentaire médiatrice de l'interaction électromagnétique. Autrement dit, lorsque deux particules chargées électriquement interagissent, cette interaction se traduit d'un...) est dans le rayonnement fossile, les 4 % restants résultant du rayonnement des étoiles (dans le domaine visible) et du gaz froid (Le froid est la sensation contraire du chaud, associé aux températures basses.) dans les galaxies (Galaxies est une revue française trimestrielle consacrée à la science-fiction. Avec ce titre elle a connu deux existences, prenant par ailleurs la suite de deux autres Galaxie, cette fois au singulier.) (en infrarouge). Ces deux autres sources émettent des photons certes plus énergétiques, mais nettement moins nombreux.

Dans la théorie de l’état stationnaire, l’existence du fond diffus cosmologique est supposée résulter d’une thermalisation du rayonnement stellaire (Stellaria est un genre de plantes herbacées annuelles ou vivaces, les stellaires, de la famille des Caryophyllaceae. Il comprend près de 90 espèces réparties à travers le monde.) par d’hypothétiques aiguillettes de fer (Le fer est un élément chimique, de symbole Fe et de numéro atomique 26. C'est le métal de transition et le matériau ferromagnétique le plus...) microscopiques, un tel modèle s’avère en contradiction (Une contradiction existe lorsque deux affirmations, idées, ou actions s'excluent mutuellement.) avec les données (Dans les technologies de l'information (TI), une donnée est une description élémentaire, souvent codée, d'une chose, d'une transaction d'affaire, d'un événement, etc.) observables, tant en termes d’abondance du fer qu’en termes d’efficacité du processus de thermalisation (il est impossible d’expliquer dans ce cadre que le fond diffus cosmologique soit un corps noir aussi parfait) ou d’isotropie (on s’attendrait à ce que la thermalisation soit plus ou moins efficace selon la distance aux galaxies).

La découverte du fond diffus cosmologique fut historiquement la preuve décisive du Big Bang.

La nucléosynthèse primordiale (En 1948, l'astronome anglais Fred Hoyle développe une théorie selon laquelle les éléments chimiques se forment dans les étoiles. Cette théorie, appelée nucléosynthèse stellaire, explique de façon...)

Dès la découverte de l’interaction forte et du fait que c’était elle qui était la source d’énergie des étoiles, s’est posée la question d’expliquer l’abondance des différents éléments chimiques dans l’univers. Au tournant des années 1950 deux processus expliquant cette abondance étaient en compétition : la nucléosynthèse stellaire (Dans le domaine de l'astrophysique, la nucléosynthèse stellaire est le terme qui désigne l'ensemble des réactions de fusion nucléaire qui ont lieu à l'intérieur des étoiles et dont...) et la nucléosynthèse (La nucléosynthèse est un ensemble de processus physiques conduisant à la synthèse de noyaux atomiques, par fission ou fusion nucléaire.) primordiale.

Les tenants de la théorie de l’état stationnaire supposaient que de l’hydrogène était produit constamment au cours du temps (Le temps est un concept développé par l'être humain pour appréhender le changement dans le monde.), et que celui-ci était peu à peu transformé en hélium (L'hélium est un gaz noble ou gaz rare, pratiquement inerte. De numéro atomique 2, il ouvre la série des gaz nobles dans le tableau périodique des éléments. Son point d'ébullition est le plus bas parmi les...) puis en éléments plus lourds au cœur des étoiles. La fraction d’hélium ou des autres éléments lourds restait constante au cours du temps car la proportion d’hélium augmentait du fait de la nucléosynthèse, mais diminuait en proportion semblable du fait de la création d’hydrogène. À l’inverse, les tenants du Big Bang supposaient que tous les éléments, de l’hélium à l’uranium avaient été produits lors de la phase dense et chaude de l’univers primordial.

La thèse (Une thèse (du nom grec thesis, se traduisant par « action de poser ») est l'affirmation ou la prise de position d'un locuteur, à l'égard du sujet ou du thème...) actuelle emprunte à chaque hypothèse :

D’après celle-ci, l’hélium et le lithium ont effectivement été produits pendant la nucléosynthèse primordiale, mais les éléments plus lourds, comme le carbone (Le carbone est un élément chimique de la famille des cristallogènes, de symbole C, de numéro atomique 6 et de masse atomique 12,0107.) ou l’oxygène, ont été créés plus tard au cœur des étoiles (nucléosynthèse stellaire). La principale preuve de ceci vient de l’étude de l’abondance des éléments dits « légers » (hydrogène, hélium, lithium) dans les quasars lointains. D’après le modèle du Big Bang, leurs abondances relatives dépendent exclusivement d’un seul paramètre (Un paramètre est au sens large un élément d'information à prendre en compte pour prendre une décision ou pour effectuer un...), à savoir le rapport de la densité de photons à la densité de baryons, qui est quasi constant depuis la nucléosynthèse primordiale. À partir de ce seul paramètre, que l’on peut d’ailleurs mesurer par d’autres méthodes, on peut expliquer l’abondance des deux isotopes de l’hélium (3He et 4He) et de celle du lithium (7Li). On observe également une augmentation de la fraction d’hélium au sein des galaxies proches, signe de l’enrichissement progressif du milieu interstellaire (En astronomie, le milieu interstellaire est le gaz raréfié qui, dans une galaxie, existe entre les étoiles et leur environnement proche. Ce gaz est habituellement extrêmement ténu, avec des densités typiques allant de...) par les éléments synthétisés par les étoiles.

L’évolution des galaxies

Le modèle du Big Bang présuppose que l’univers ait été par le passé dans un état bien plus homogène qu’aujourd’hui. La preuve en est apportée par l’observation du fond diffus cosmologique dont le rayonnement est extraordinairement isotrope : les écarts de température ne varient guère plus d’un cent-millième de degré (Le mot degré a plusieurs significations, il est notamment employé dans les domaines suivants :) selon la direction d’observation.

Il est donc supposé que les structures astrophysiques (galaxies, amas de galaxies) n’existaient pas à l’époque du Big Bang mais se sont peu à peu formées. Le processus à l’origine de leur formation est d’ailleurs connu depuis les travaux de James Jeans en 1902 : c’est l’instabilité gravitationnelle.

Le Big Bang prédit donc que les galaxies que nous observons se sont formées quelque temps après le Big Bang, et d’une manière générale que les galaxies du passé ne ressemblaient pas exactement à celles que l’on observe dans notre voisinage (La notion de voisinage correspond à une approche axiomatique équivalente à celle de la topologie. La topologie traite plus naturellement les notions globales comme la continuité qui s'entend ici comme la continuité en tout...). Comme la lumière (La lumière est l'ensemble des ondes électromagnétiques visibles par l'œil humain, c'est-à-dire comprises dans des longueurs d'onde de 380nm (violet) à 780nm (rouge). La lumière est intimement liée à...) voyage (Un voyage est un déplacement effectué vers un point plus ou moins éloigné dans un but personnel (tourisme) ou professionnel (affaires). Le voyage s'est considérablement développé et...) à une vitesse (On distingue :) finie, il suffit de regarder des objets lointains pour voir à quoi ressemblait l’univers par le passé.

L’observation des galaxies lointaines, qui d’après la loi de Hubble (En astronomie, la loi de Hubble énonce que les galaxies s'éloignent les unes des autres à une vitesse (approximativement, voir ci-dessous) proportionnelle à...) ont un grand décalage vers le rouge (La couleur rouge répond à différentes définitions, selon le système chromatique dont on fait usage.) montre effectivement que les galaxies primordiales étaient assez différentes de celles d’aujourd’hui : les interactions entre galaxies étaient plus nombreuses, les galaxies massives moins nombreuses, ces dernières étant apparues plus tard des suites des phénomènes de fusion (En physique et en métallurgie, la fusion est le passage d'un corps de l'état solide vers l'état liquide. Pour un corps pur, c’est-à-dire pour une substance...) entre galaxies. De même, la proportion de galaxies spirale (En mathématiques, une spirale est une courbe qui commence en un point central puis s'en éloigne de plus en plus, en même temps qu'elle tourne autour.), elliptique et irrégulière varie au cours du temps.

Toutes ces observations sont relativement délicates à effectuer, en grande partie car les galaxies lointaines sont peu lumineuses et nécessitent des moyens d’observation très performants pour être bien observées. Depuis la mise en service du télescope spatial Hubble (Le télescope spatial Hubble (en anglais, Hubble Space Telescope ou HST) est un télescope en orbite à environ 600 kilomètres d'altitude, il effectue un tour complet de la Terre toutes les 100 minutes. Il est...) en 1990 puis des grands observatoires au sol VLT, Keck, Subaru (Subaru est un constructeur automobile japonais, né en 1956, et faisant partir du groupe Fuji Heavy Industries), l’observation des galaxies à grand redshift a permis de vérifier les phénomènes d’évolution des populations galactiques prédits par les modèles de formation et d’évolution des galaxies dans le cadre des modèles du Big Bang.

L’étude des toutes premières générations d’étoiles et de galaxies demeure un des enjeux majeurs de la recherche (La recherche scientifique désigne en premier lieu l’ensemble des actions entreprises en vue de produire et de développer les connaissances scientifiques. Par extension métonymique,...) astronomique du début du XXIe siècle.

La mesure de la température du fond diffus cosmologique à grand décalage vers le rouge

En décembre 2000, Raghunathan Srianand, Patrick Petitjean et Cédric Ledoux ont mesuré la température du fond diffus cosmologique baignant un nuage interstellaire (En astronomie, nuage interstellaire est le nom générique donné aux accumulations de gaz et de poussières dans notre Galaxie. L'hydrogène contenu dans un nuage interstellaire peut, selon la densité, la taille et la...) dont ils ont observé l’absorption du rayonnement émis par le quasar (En astronomie, un quasar (pour source de rayonnement quasi-stellaire, quasi-stellar en anglais) est une source d'énergie électromagnétique,...) d’arrière plan PKS 1232+0815, situé à un décalage vers le rouge de 2,57.

L’étude du spectre d’absorption permet de déduire la composition chimique du nuage (Un nuage est une grande quantité de gouttelettes d’eau (ou de cristaux de glace) en suspension dans l’atmosphère. L’aspect d'un nuage dépend de la lumière qu’il reçoit, de la...), mais aussi sa température si l’on peut détecter les raies correspondant à des transitions entre différents niveaux excités de divers atomes ou ions présents dans le nuage (dans le cas présent, du carbone neutre). La principale difficulté dans une telle analyse est d’arriver à séparer les différents processus physiques pouvant peupler les niveaux excités des atomes.

Les propriétés chimiques de ce nuage, ajoutées à la très haute résolution spectrale de l’instrument utilisé (le spectrographe UVES du Very Large Telescope) ont pour la première fois permis d’isoler la température du rayonnement de fond. Srianand, Petitjean et Ledoux ont trouvé une température du fond diffus cosmologique comprise entre 6 et 14 kelvins, en accord avec la prédiction du Big Bang, de 9,1 K, étant donné que le nuage est situé à un décalage vers le rouge de 2,33 771.

Leur découverte a été publiée dans la revue scientifique (Un scientifique est une personne qui se consacre à l'étude d'une science ou des sciences et qui se consacre à l'étude d'un domaine avec la rigueur et les méthodes scientifiques.) britannique Nature.

Page générée en 1.086 seconde(s) - site hébergé chez Amen
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
Ce site est édité par Techno-Science.net - A propos - Informations légales
Partenaire: HD-Numérique