Les résidus des mines d'uranium sont de deux types : Les stériles miniers (non exploités), et les résidus de traitement (dont l'uranium a été extrait).
Les stériles miniers sont extraits, mais non exploités, parce qu'ils présentent une teneur en uranium négligeable, ou insuffisante pour qu'une exploitation soit économiquement rentable. Ces stériles ont une « teneur de coupure » qui dépend des conditions économiques (en particulier, du cours de l'uranium), mais qui restent typiquement de l'ordre du pour mille. Ces stériles non exploitables ont donc une radioactivité au plus de l'ordre de 100 Bq/g, ce qui est la radioactivité moyenne des cendres de charbon. Ils sont généralement laissés en tas, ou peuvent être utilisés comme matériaux de remblais : leur radioactivité est très sensiblement supérieure à celle de roches usuelles (le granite naturel a une radioactivité de l'ordre de 1 becquerel par gramme, due à la présence d’uranium, de l’ordre de 10 ppm), et est facilement détectable, mais l'exposition supplémentaire induite par cette radioactivité reste largement en deçà du seuil réglementaire de un mili-sievert par personne et par an, et n'entraîne pas d'incidence sanitaire statistiquement détectable.
Les résidus de traitement miniers correspondent aux minerais riches, dont a été extrait l'uranium. Ces résidus contiennent encore des traces d'uranium, mais surtout l'ensemble des éléments de la chaîne radioactive de désintégration des uranium 235 et 238. Ces résidus contiennent donc des déchets à vie longue : du Thorium 230 (75 000 ans), du Radium 226 (1 600 ans) et du Protactinium 231 (32 700 ans). Ils contiennent à l'état de traces l'ensemble des éléments de la chaîne radioactive aval, qui emporte 80% à 90% de la radioactivité initiale du minerai (laquelle peut être importante).
Ces résidus de traitement miniers peuvent présenter trois types de problème pour la radioprotection :
Par ailleurs, indépendamment de cette problématique de radioprotection, les stériles ou résidus miniers peuvent poser des problèmes de toxicité chimique, quand l'uranium est présent avec d'autre produits par ailleurs toxiques (plomb, arsenic,...).
La majorité des réacteurs modernes fonctionnent avec de l'uranium enrichi. S'il y a enrichissement de l'uranium d'une part, il reste bien évidemment de l'uranium appauvri d'autre part : L'enrichissement produit des quantité importantes d'uranium appauvri, les « queues » du retraitement, qui (sauf précision contraire du contrat d'enrichissement) reste la propriété de l'enrichisseur. Les pays qui ont une industrie d'enrichissement de l'uranium ont donc d'importants stocks d'uranium appauvri non utilisé (USA, France, Grande Bretagne, Russie).
Les usines d'enrichissement peuvent également faire du ré-enrichissement. Le ré-enrichissement peut prendre deux formes :
L'uranium appauvri est, pour la plus grande part, entreposé en l'attente d'une valorisation ultérieure, car est constitué d'uranium 238, isotope fertile susceptible de produire du combustible nucléaire dans des filières à surgénérateur, dont l'emploi est prévu avec les réacteurs de quatrième génération à l'horizon 2050. Ayant des utilisations prévues dans l'industrie nucléaire, l'uranium appauvri n'est pas considéré comme un « déchet nucléaire », que ce soit juridiquement ou économiquement. Cependant, cette utilisation n'est prévue qu'à moyen ou long terme, et l'uranium appauvri est simplement stocké dans l'immédiat. Par ailleurs, l'uranium appauvri est également utilisé dès à présent dans la fabrication du combustible MOX pour les REP ou les RNR, et a d'autres utilisations quantitativement marginales (obus, lests...).
Le caractère valorisable ou non de ces stocks fait l'objet de polémiques de la part d'associations écologistes, qui considèrent que « Si l’uranium retraité n’est pas nécessaire, il doit être éliminé comme déchet radioactif », et « Les contrats cités dans "L'exutoire Russe" sont en violation claire de la loi russe, et selon cette législation les déchets d’uranium devraient être renvoyés dans les pays clients dans leur totalité ».
Les déchets radioactifs de la production électronucléaire peuvent être regroupés dans les quatre catégories suivantes, examinées dans la suite de l'article:
Les combustibles issus des réacteurs électrogènes ne constituent pas à proprement parler des déchets au sens de la définition du terme en question puisqu'ils sont valorisables pour partie (cf ci-après le point "Valorisation du combustible des réacteurs électrogènes")
pour environ 3% de la masse des produits de fission
En outre, les matériaux constitutifs des installations nucléaires subissent des irradiations neutroniques prolongées, qui génèrent des produits d'activation par capture neutronique. Les principaux produits d'activation rencontrés résultent d'éléments présents comme éléments à l'état de trace, principalement dans le béton ou l'acier. Les principaux produits d'activation rencontrés sont :
On trouve également les produits d'activation suivants :
Dans les réacteurs à eau, du tritium (12,32 ans, β- de 0,0186 MeV) est produit dans l'eau, par activation des éléments légers (Bore et Lithium) présents dans le circuit primaire. Un réacteur de 900 MWe rejette de l'ordre de 10 TBq / an (soit 0,03 g/an).
Les réacteurs à eau lourde produisent également du tritium par activation du deutérium ; toutefois dans ce dernier cas une partie du tritium produit est valorisé et commercialisé pour divers usages industriels.Grâce aux réacteurs CANDU, le Canada est ainsi le 1er producteur mondial de tritium . Ce tritium valorisé ne peut donc pas être considéré comme un déchet stricto sensu.