Géométrie de contact - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

Structure standard sur ℝ3 : champ de plans

La géométrie de contact est la partie de la géométrie différentielle qui étudie les formes et structures de contact. Elle entretient d'étroits liens avec la géométrie symplectique, la géométrie complexe, la théorie des feuilletages de codimension un et les systèmes dynamiques. La géométrie de contact classique est née de l'étude de la thermodynamique et de l'optique géométrique. Une structure de contact sur une variété (géométrie) est un champ d'hyperplan, c'est-à-dire la donnée en tout point d'un hyperplan dans l'espace tangent. L'illustration montre un exemple de structure de contact sur 3 qui est le modèle local de toutes les structures de contact en dimension trois.

Généralités

En géométrie différentielle, une forme de contact est une 1-forme différentielle α sur une variété différentielle V de dimension impaire 2n + 1, telle que \alpha\wedge (\mathrm d\alpha)^n soit une forme volume. De manière équivalente, on demande à ce que soit non dégénérée sur la distribution d'hyperplans kerα. Une forme de contact définit deux objets distincts : une structure de contact et un champ de Reeb.

Selon le théorème de Frobenius, un champ d'hyperplans est localement intégrable lorsqu'il peut localement être décrit comme le noyau d'une 1-forme différentielle fermée. A l'opposé, une structure de contact est un champ d'hyperplans qui peut être défini localement comme le noyau d'une forme de contact : ce champ est maximalement non-intégrable. Plus précisément, on peut montrer que les sous-variétés intégrales d'un tel champ d'hyperplans sont de dimension au plus n. Lorsque cette dimension maximale est atteinte, on parle de sous-variétés legendriennes. En dimension trois, les sous-variétés legendriennes connexes et compactes sont des nœuds appelés nœuds legendriens ; il s'agit du cas aujourd'hui le plus étudié.

Pour une forme de contact α, il existe un unique champ de vecteurs R, appelé champ de Reeb, vérifiant : ι(R)α = 1 et ι(R)dα = 0. A ce champ de Reeb est associé un flot, le flot de Reeb.

Un application entre variétés de contact qui envoie une structure de contact sur l'autre est appelée transformation de contact ou contactomorphisme. La théorie de ces applications remonte à Sophus Lie.

Exemples

  • En dimension 1, les formes de contact sont exactement les formes volumes. Les variétés connexes de dimension 1 étant à difféomorphisme près la droite réelle et le cercle, ces formes volumes sont essentiellement données par des fonctions dérivables d'une variable réelle.
  • Structure de contact canonique sur 2n+1 : Sur l'espace affine réel 2n+1, muni du système de coordonnées usuel (x,y,z) = (x1,...,xn,y1,...,yn,z), les formes différentielles suivantes sont des formes de contact et les variétés de contact obtenues sont contactomorphes :
     \alpha=\mathrm dz-\sum_{i=1}^n y_i\mathrm dx_i et  \alpha=\mathrm dz+\sum_{i=1}^n (x_i\mathrm dy_i-y_i\mathrm dx_i) .
  • Structure de contact canonique sur l'espace des 1-jets de fonctions : Le fibré J1(M,R) des 1-jets de fonctions d'une variété M dans ℝ est muni d'une structure de contact canonique caractérisée par le fait que les relevés de fonctions sont des sous-variétés legendriennes. Dans le cas où M = ℝn on retrouve la structure de contact canonique sur 2n+1.
  • Structure canonique sur la sphère : Dans n+1 muni des coordonnées réelles usuelles (x1,y1,...,xn,yn), la sphère unité S2n + 1 admet une forme de contact naturelle, restriction de :
    \sum_{i=1}^{n+1} (x_i\mathrm dy_i-y_i\mathrm dx_i) .
    Le champ de Reeb associé est R(z) = i.z ; les orbites du flot de Reeb sont exactement les traces sur la sphère des droites complexes.
  • Hypersurfaces strictement pseudo-convexes : Si W est une variété complexe et V une hypersurface réelle strictement pseudo-convexe de W alors le champ des hyperplans complexes du fibré tangent à W qui sont inclus dans le fibré tangent à V est une structure de contact. L'exemple des sphères plus haut en est un cas particulier.
  • Structure canonique sur le fibré des hyperplans tangents : Si M est une variété, le fibré \pi : PT^*M\to M des hyperplans des espaces tangents à M porte une structure de contact canonique définie par \xi(P):=\pi_*^{-1}(P) . Si M est munie d'une métrique riemannienne, il est possible d'identifier PT * M au fibré en sphères unités du fibré tangent de M, la structure de contact se transporte et se réalise comme le noyau de la restriction de la forme de Liouville, qui est donc une forme de contact. Le flot de Reeb n'est autre que le flot géodésique ; sa dynamique dépend évidemment de la métrique, en particulier de la courbure.
Page générée en 0.086 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise