Géométrie projective - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Aperçu élémentaire

Pour ceux qui ne désirent qu'un aperçu élémentaire de ce qu'est la géométrie projective par rapport à la géométrie euclidienne ordinaire on peut dire que la géométrie projective est l'étude de ce qui, dans les figures, reste inchangé après projection, alors que la géométrie euclidienne est l'étude de ce qui reste invariant après déplacement (on peut la voir aussi comme la science des figures qui se tracent à la règle et au compas) ; de ce point de vue, la géométrie projective comporte moins d'axiomes que la géométrie euclidienne et par suite elle est plus générale (et on peut considérer que la topologie est plus générale encore).

La géométrie projective ignore les droites parallèles, les droites perpendiculaires, les isométries, les cercles, les triangles rectangles, isocèles, équilatéraux, etc ; on peut aussi dire, par exemple, que pour elle, cercles, ellipses et hyperboles ne constituent qu'une seule figure.

Enfin elle est remarquable par le fait qu'il est possible de poser certaines conventions de langage (par exemple appeler parallèles deux droites qui se coupent sur une droite choisie du plan) qui permettent, par la géométrie projective, de retrouver les résultats de la géométrie affine (voir ).

Sous-espace projectif

Comme il existe des sous-espaces vectoriels d'espace vectoriel ainsi que des sous-espaces affine d'espace affine, il existe de même des sous-espaces projectifs d'espace projectif. Ils sont constitués des projetés des sous-espaces vectoriels de l'espace vectoriel associé. On parlera donc de droite projective dans un plan projectif, de plan projectif dans un espace projectif. La règle des dimensions et l'existence de points à l'infini permettent de simplifier les règles d'incidence.

Repérage

Coordonnées homogènes

Dans un espace projectif de dimension n, donc associé à un espace vectoriel de dimension n + 1, chaque point m de P(E) est associé à une famille de vecteurs de E tous colinéaires. Si E est muni d'une base canonique, on appelle coordonnées homogènes du point m, les coordonnées d'un vecteur quelconque x tels que \pi(x) = m\, . Un point possède donc une famille de coordonnées toutes proportionnelles entre elles. Autrement dit, si (x_1, x_2, ....., x_{n+1})\, est un système de coordonnées homogènes de m, il en est de même de (kx_1, kx_2, ....., kx_{n+1})\, pour tout élément k non nul de K.

Parmi toutes ces coordonnées, il arrive souvent que l'on en privilégie une pour retrouver un espace affine de dimension n. Parmi tous les représentants de m, on privilégie, par exemple, celui dont la dernière coordonnée vaut 1. Cela revient à dire que l'on a projeté l'espace dans l'hyperplan d'équation x_{n+1} = 1\, . Si (x_1, x_2 ..., x_{n+1})\, est un système de coordonnées de m, on privilégie le système de coordonnées ({x_1\over x_{n+1}}, {x_2 \over x_{n+1}}, ..., {x_n \over x_{n+1}} , 1)\, . Cela ne vaut évidemment que si m est un point propre de P(E).

Les points impropres sont représentés par des systèmes de coordonnées homogènes dont la dernière coordonnée est nulle.

On remarque alors bien là la correspondance entre

  • les point propres de P(E) et les points d'un espace affine de dimension n
  • les points impropres de P(E) et les directions d'un espace vectoriel de dimension n

Choisir arbitrairement de mettre une coordonnée à 1 dans les coordonnées homogènes permet de définir des cartes différentes.

Repère d'un espace projectif

Un espace vectoriel de dimension n se repère par une base de n vecteurs indépendants. Un espace affine de dimension n se repère à l'aide de n + 1 points non liés. Un espace projectif de dimension n se repère à l'aide de n+2 points. On pourrait penser que n+1 points seraient suffisants en prenant par exemple (\pi(e_1), \pi(e_2),...,\pi(e_{n+1}))\, (e_i)_{i \in \{1 ; n+1\}} forme une base de l'espace vectoriel de dimension n+1 associé à l'espace projectif. Les coordonnées d'un point m \, dans ce repère seraient alors (x_1, ..., x_{n+1}) \, (x_1, ..., x_{n+1})\, sont les coordonnées de x\, tels que \pi(x)= m\, mais il faudrait que ces coordonnées soient indépendantes du représentant choisi pour les vecteurs de la base : \pi(e_1)\, , par exemple, a un autre représentant qui est 2e_1\, . Et dans la base (2e_1, e_2, ..., e_{n+1})\, x\, n'a pas le même système de coordonnées (x_1/2, x_2, ..., x_{n+1})\, .

Il faut donc empêcher cette ambiguïté et limiter le choix d'autres représentants des vecteurs de base à des vecteurs colinéaires aux précédents mais de même coefficient de colinéarité. Il suffit pour cela de définir un n+2 ième point correspondant à \pi(e_1 + e_2 + ...+ e_{n+1})\, . Ainsi, si on choisit d'autres représentants de \pi(e_1) ...\pi(e_{n+1})\, avec des coefficients de colinéarité différents, le vecteur k_1e_1 + ... + k_{n+1}e_{n+1}\, ne sera plus un représentant de \pi(e_1 + e_2 + ...+ e_{n+1})\, .

Page générée en 0.103 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise