Propergol liquide - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Qualités d'un propergol liquide

Hypergolique / non-hypergolique

On qualifie d'hypergolique un couple d'ergols qui, lorsqu'ils sont mis en contact l'un avec l'autre, autocatalysent leur propre oxydoréduction : la combustion s'initie spontanément, sans qu'il y ait besoin d'un système d'allumage, ce qui simplifie la réalisation du moteur-fusée. La fiabilité de la propulsion s'en trouve améliorée, car il devient possible de contrôler la poussée à l'aide de deux valves (une par ergol) sans devoir recourir à des systèmes de contrôle d'allumage complexes et fragiles. De plus, la nature même des ergols empêche qu'ils ne s'accumulent sous forme d'un mélange explosif à l'origine de surpressions dommageables au moment de l'allumage (hard start). En contrepartie, de tels hypergols sont généralement dangereux à manipuler en raison de leur grande réactivité chimique.

Cryogénique / stockable

On qualifie de cryogénique un propergol dont l'un au moins des ergols doit être maintenu à une température inférieure à -150 °C, température à partir de laquelle certains gaz de l'air se condensent à pression ambiante. De tels propergols sont généralement très performants mais ne peuvent être utilisés qu'au décollage depuis la Terre, car ils ne peuvent être maintenus longtemps à la température requise une fois chargés dans le lanceur. C'est tout particulièrement le cas de l'hydrogène liquide, qui commence à s'évaporer dès qu'il est en réservoir.

A l'opposé, les propergols stockables peuvent être maintenus liquides sur de longues périodes de temps sans nécessiter d'installations particulières pour les conserver.

Comparaison numérique de propergols liquides

Données nominales au niveau de la mer

Le tableau déroulant qui suit reproduit un formulaire ASCII donnant les principales grandeurs caractérisant un propergol liquide par oxydant et par combustible en détaillant si nécessaire les nuances de proportions dans les mélanges :

Le site http://www.braeunig.us/space/ présente des données similaires.

Comparaison des données au niveau de la mer et dans le vide

PSI kPa coeff
1000 6 895 1,00
900 6 205 0,99
800 5 516 0,98
700 4 826 0,97
600 4 137 0,95
500 3 447 0,93
400 2 758 0,91
300 2 068 0,88

Les données du tableau ci-dessous sont issues de l'ouvrage de Huzel & Huang intitulé « Modern Engineering for Design of Liquid-Propellant Rocket Engines », 1992, American Institute of Aeronautics and Astronautics, Washington, ISBN 1563470136 ; on y trouve les résultats publiés par la société Rocketdyne sur la base de calculs menés en supposant une combustion adiabatique, une détente isentropique uniaxiale et l'ajustement continu du rapport de mélange oxydant/combustible en fonction de l'altitude. Ces calculs sont menés pour une pression en chambre de combustion de 1 000 PSI, c'est-à-dire 1 000 « livres par pouce-carré » (Pounds per Square Inch), ce qui correspond, en unités internationales (S.I.), à 6 894 757 Pa. La vitesse d'éjection aux pressions inférieures peut être estimée en appliquant un coefficient à partir de l'abaque ci-contre.

Les grandeurs reproduites dans ce tableau sont les suivantes :

  • ratio, le rapport de mélange (débit massique de l'oxydant / débit massique du combustible)
  • ve, la vitesse d'éjection des gaz d'échappement, exprimée en mètres / seconde
  • d, la densité apparente du propergol, exprimée en grammes / cm3
  • TC, la température d'équilibre dans la chambre de combustion, exprimée en °C
  • C*, la vitesse caractéristique, exprimée en mètres / seconde

L'intérêt de ce tableau est d'expliciter l'évolution des paramètres entre le décollage et l'arrivée en orbite : à gauche, les valeurs au niveau de la mer ; à droite, les mêmes dans le vide. Il s'agit chaque fois des valeurs nominales calculées pour un système idéal, arrondies en unités S.I. (les compositions sont exprimées en pourcentages massiques) :

Oxydant Réducteur Hyprg Cryo Détente optimale à 6 895 kPa
au niveau de la mer
Détente optimale à 6 895 kPa
dans le vide
Propergols à oxydant cryogénique LOX, LF2 ou FLOX ratio
Ox/Red
ve
m/s
d
g/cm3
TC
°C
C*
m/s
ratio
Ox/Red
ve
m/s
d
g/cm3
TC
°C
C*
m/s
O2 H2 Non Oui 4,13 3 816 0,29 2 740 2 416 4,83 4 462 0,32 2 978 2 386
CH4 Non Oui 3,21 3 034 0,82 3 260 1 857 3,45 3 615 0,83 3 290 1 838
C2H6 Non Oui 2,89 3 006 0,90 3 320 1 840 3,10 3 584 0,91 3 351 1 825
RP-1 Non Oui 2,58 2 941 1,03 3 403 1 799 2,77 3 510 1,03 3 428 1 783
N2H4 Non Oui 0,92 3 065 1,07 3 132 1 892 0,98 3 460 1,07 3 146 1 878
B2H6 Non Oui 1,96 3 351 0,74 3 489 2 041 2,06 4 016 0,75 3 563 2 039
70% O2 + 30% F2 H2 Non Oui 4,80 3 871 0,32 2 954 2 453 5,70 4 520 0,36 3 195 2 417
RP-1 Non Oui 3,01 3 103 1,09 3 665 1 908 3,30 3 697 1,10 3 692 1 889
70% F2 + 30% O2 RP-1 Oui Oui 3,84 3 377 1,20 4 361 2 106 3,84 3 955 1,20 4 361 2 104
87,8% F2 + 12,2% O2 MMH Oui Oui 2,82 3 525 1,24 4 454 2 191 2,83 4 148 1,23 4 453 2 186
F2 H2 Oui Oui 7,94 4 036 0,46 3 689 2 556 9,74 4 697 0,52 3 985 2 530
34,8% Li + 65,2% H2 Oui Oui 0,96 4 256 0,19 1 830 2 680
39,3% Li + 60,7% H2 Oui Oui 1,08 5 050 0,21 1 974 2 656
CH4 Oui Oui 4,53 3 414 1,03 3 918 2 068 4,74 4 075 1,04 3 933 2 064
C2H6 Oui Oui 3,68 3 335 1,09 3 914 2 019 3,78 3 987 1,10 3 923 2 014
MMH Oui Oui 2,39 3 413 1,24 4 074 2 063 2,47 4 071 1,24 4 091 1 987
N2H4 Oui Oui 2,32 3 580 1,31 4 461 2 219 2,37 4 215 1,31 4 468 2 122
NH3 Oui Oui 3,32 3 531 1,12 4 337 2 194 3,35 4 143 1,12 4 341 2 193
Propergols cryogéniques à oxydant fluorure d'oxygène Hyprg Cryo ratio
Ox/Red
ve
m/s
d
g/cm3
TC
°C
C*
m/s
ratio
Ox/Red
ve
m/s
d
g/cm3
TC
°C
C*
m/s
OF2 H2 Oui Oui 5,92 4 014 0,39 3 311 2 542 7,37 4 679 0,44 3 587 2 499
CH4 Oui Oui 4,94 3 485 1,06 4 157 2 160 5,58 4 131 1,09 4 207 2 139
C2H6 Oui Oui 3,87 3 511 1,13 4 539 2 176 3,86 4 137 1,13 4 538 2 176
RP-1 Oui Oui 3,87 3 424 1,28 4 436 2 132 3,85 4 021 1,28 4 432 2 130
N2H4 Oui Oui 1,51 3 381 1,26 3 769 2 087 1,65 4 008 1,27 3 814 2 081
MMH Oui Oui 2,28 3 427 1,24 4 075 2 119 2,58 4 067 1,26 4 133 2 106
50,5% MMH + 29,8% N2H4 + 19,7% H2O Oui Oui 1,75 3 286 1,24 3 726 2 025 1,92 3 908 1,25 3 769 2 018
B2H6 Oui Oui 3,95 3 653 1,01 4 479 2 244 3,98 4 367 1,02 4 486 2 167
Propergols stockables à oxydant azoté Hyprg Cryo ratio
Ox/Red
ve
m/s
d
g/cm3
TC
°C
C*
m/s
ratio
Ox/Red
ve
m/s
d
g/cm3
TC
°C
C*
m/s
IRFNA IIIa MMH Oui Non 2,59 2 690 1,27 2 849 1 665 2,71 3 178 1,28 2 841 1 655
UDMH Oui Non 3,13 2 668 1,26 2 874 1 648 3,31 3 157 1,27 2 864 1 634
60% UDMH + 40% DETA Oui Non 3,26 2 638 1,30 2 848 1 627 3,41 3 123 1,31 2 839 1 617
IRFNA IV HDA MMH Oui Non 2,43 2 742 1,29 2 953 1 696 2,58 3 242 1,31 2 947 1 680
UDMH Oui Non 2,95 2 719 1,28 2 983 1 676 3,12 3 220 1,29 2 977 1 662
60% UDMH + 40% DETA Oui Non 3,06 2 689 1,32 2 903 1 656 3,25 3 187 1,33 2 951 1 641
N2O4 N2H4 Oui Non 1,36 2 862 1,21 2 992 1 781 1,42 3 369 1,22 2 993 1 770
MMH Oui Non 2,17 2 827 1,19 3 122 1 745 2,37 3 347 1,20 3 125 1 724
50% UDMH + 50% N2H4 Oui Non 1,98 2 831 1,12 3 095 1 747 2,15 3 349 1,20 3 096 1 731
Propergols stockables à oxydant halogéné Hyprg Cryo ratio
Ox/Red
ve
m/s
d
g/cm3
TC
°C
C*
m/s
ratio
Ox/Red
ve
m/s
d
g/cm3
TC
°C
C*
m/s
ClF3 N2H4 Oui Non 2,81 2 885 1,49 3 650 1 824 2,89 3 356 1,50 3 666 1 822
ClF5 N2H4 Oui Non 2,66 3 069 1,47 3 894 1 935 2,71 3 580 1,47 3 905 1 934
MMH Oui Non 2,82 2 962 1,40 3 577 1 837 2,83 3 488 1,40 3 579 1 837
86% MMH + 14% N2H4 Oui Non 2,78 2 971 1,41 3 575 1 844 2,81 3 498 1,41 3 579 1 844
Page générée en 0.151 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise