Table des symboles mathématiques - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Autres branches

Symbole
(TeX)
Symbole
(utf8)
Nom Signification Exemples
Prononciation
Branche
! \!\,  ! Factorielle n! est le produit : 1 × 2 × ... × n. 6! = 1 × 2 × 3 × 4 × 5 × 6 = 720
Factorielle (de) n.
Combinatoire
\sim ~ Relation d'équivalence
« ... est équivalent à ... »
Théorie des ensembles
Équivalence an ~ bn signifie que les suites an et bn sont équivalentes sin(1/n) ~ 1/n (lorsque n tend vers l'infini)
« ... est équivalent à ... »
Analyse
Distribution de probabilité X ~ D, signifie : « la variable aléatoire X a la distribution de probabilité D » X ~ N(0,1), la distribution ou loi normale
« ... a la distribution de probabilité ... »
Statistiques
=\, = Égalité x = y signifie : « x et y désignent le même objet mathématique » 1 + 2 = 6 − 3
« est égal à »
toute branche
\not= Non-égalité x\not=y signifie : « x et y ne désignent pas le même objet mathématique » 2 ≠ 3
« n'est pas égal à »,
« est différent de »
toute branche
\equiv Congruence
« identique à »,
« congru à »
Arithmétique modulaire
\propto Proportionnalité x \propto y signifie : « x est proportionnel à y » si y=2x, alors y \propto x
« est proportionnel à »
toute branche
: =
:\Leftrightarrow
 :=
:⇔
Définition x: = y signifie : « x est défini comme étant un autre nom de y »
P :\Leftrightarrow Q signifie : « P est définie comme étant logiquement équivalente à Q »
\cosh (x) := {1\over 2}\left(e^x+e^{-x}\right) (cosinus hyperbolique)
A \oplus B :\Leftrightarrow (A\vee B)\wedge \neg (A\wedge B) (OU exclusif)
« est défini comme »
le second est très peu utilisé
{,} { , } Ensemble en extension {a,b,c} désigne l'ensemble dont les éléments sont a, b et c \mathbb N = \{0,1,2\ldots \} (ensemble des entiers naturels)
« L'ensemble des ... »
Théorie des ensembles
{ / }
{;}
{}
{ / }
{ ; }
{ }
Construction d'ensemble en compréhension {x / P(x)} désigne l'ensemble de tous les x qui vérifient P(x).
{x / P(x)} est le même ensemble que {x;P(x)} ou encore que {xP(x)}
\{n\in \mathbb N / n^2<20\} = \{0, 1, 2, 3, 4\}
« L'ensemble de tous les ... qui vérifient ... »
Théorie des ensembles
\emptyset
{}

{}
Ensemble vide {} et \emptyset désignent l'ensemble vide, l'ensemble qui n'a pas d'élément \{n\in \mathbb N / 1<n^2<4\} = \emptyset
« Ensemble vide »
Théorie des ensembles
\in
\notin

Appartenance (ou non) à un ensemble a\in S signifie : « a est un élément de l'ensemble S »
a\notin S signifie : « a n'est pas élément de S »
2\in \mathbb N
{1\over 2}\notin \mathbb N
« appartient à », « est élément de », « est dans ».
« n'appartient pas », « n'est pas élément de », « n'est pas dans »
Théorie des ensembles
\subseteq
\subset

Sous-ensemble A\subseteq B signifie : « tout élément de A est aussi un élément de B »
A\subset B a généralement la même signification que A\subseteq B . Signalons toutefois que pour certains, les canadiens français notamment, le symbole \subset représente l'inclusion stricte \subsetneq .
(A\cap B) \subseteq A
\mathbb Q\subseteq \mathbb R
« est un sous-ensemble (une partie) de ... », « est inclus dans... »
Théorie des ensembles
\subsetneq Sous-ensemble strict, partie stricte A\subsetneq B signifie A\subseteq B et A\ne B (ou A\subset B et A\ne B quand \subset représente l'inclusion au sens large). \mathbb N\subsetneq \mathbb Q
« est un sous-ensemble strict de ... », « est strictement inclus dans... »
Théorie des ensembles
\supseteq
\supset

Sur-ensemble A\supseteq B est une autre façon d'écrire B\subseteq A .
A\supset B est une autre façon d'écrire B\subset A
A \supseteq (A\cap B)
\mathbb R \supseteq \mathbb Q
« est un sur-ensemble de ... », « contient... »
Théorie des ensembles
\supsetneq Sur-ensemble strict A\supsetneq B a le même sens que B\subsetneq A . \mathbb Q \supsetneq \mathbb N
« est un sur-ensemble strict de ... », « contient strictement... »
Théorie des ensembles
\cup Réunion A\cup B désigne l'ensemble qui contient tous les éléments de A et de B et seulement ceux-là A\subseteq B\Leftrightarrow A\cup B=B
« Réunion de ... et de ... », « ... union ... »
Théorie des ensembles
\cap Intersection A\cap B désigne l'ensemble des éléments qui appartiennent à la fois à A et à B, c'est-à-dire les éléments qu'ont les ensembles A et B en commun \{x\in \R / x^2=1\}\cap \mathbb N = \{1\}
« Intersection de ... et de ... », « ... inter ... »
Théorie des ensembles
\setminus \ Différence A\setminus B désigne l'ensemble de tous les éléments de A qui n'appartiennent pas à B \{1,2,3,4\}\setminus \{3,4,5,6\} = \{1,2\}
« différence de ... et ... », « ... moins ... », « ... privé de ... »
Théorie des ensembles
()
[]
{}
( )
[ ]
{ }
Fonction application ; regroupement f(x) désigne l'image de l'élément x par la fonction f
Regroupement: les opérations placées à l'intérieur sont effectuées en premier
Si f est définie par f(x) = x2, alors f(3) = 32 = 9
(8/4)/2 = 2/2 = 1, mais 8/(4/2) = 8/2 = 4
« de »
toute branche
\to Fonction f:X\to Y signifie que la fonction va de X dans Y, ou a pour ensemble de définition X et pour ensemble d'arrivée Y, ou a pour origine X et pour but Y. Considérons la fonction f:\mathbb Z\to \mathbb Z définie par f(x) = x2
« de ... vers », « de ... dans », « de ... sur ... »
toute branche
\mapsto Fonction x \mapsto f(x) signifie que la variable x a pour image f(x) Au lieu d'écrire que f est définie par f(x) = x2, nous pouvons écrire " Soit la fonction f\colon x \mapsto x^2 "
« est envoyé sur », « a pour image »
toute branche
\mathbb N Ensemble des entiers naturels \mathbb N représente \{0, 1, 2, 3, \ldots \} \{\left|a\right| / a\in \mathbb Z\}=\mathbb N
« N »
Nombre
\mathbb N ^{*} * « N privé de zéro » \mathbb N ^{*} = \mathbb N \setminus \{ 0 \} = \{1, 2, 3, \ldots \}
\mathbb Z Ensemble des entiers relatifs \mathbb Z représente \{\ldots -3, -2, -1, 0, 1, 2, 3 \ldots \} \{a, -a / a \in \mathbb N\}=\mathbb Z
« Z »
Nombre
\mathbb D ID Ensemble des nombres décimaux \mathbb D représente \left\{{a \over 10^n} / a\in \mathbb Z \wedge n\in \mathbb N\right\} 0,66 \in \mathbb D
{2 \over 3} \notin \mathbb D
« D »
Nombre
\mathbb Q Ensemble des nombres rationnels \mathbb Q représente \left\{{p\over q} / p\in \mathbb Z \wedge q\in \mathbb Z\wedge q\ne 0\right\} 3,14\in \mathbb Q
\pi \notin \mathbb Q
« Q »
Nombre
\mathbb Q ^{+} + \mathbb Q ^{+} = \{ x \in \mathbb Q, x \geqslant 0 \}
\R Ensemble des nombres réels \R représente l'ensemble des limites des suites de Cauchy de \mathbb Q \pi \in \R
i \notin \R (i étant le nombre complexe tel que i2 = − 1)
« R »
Nombre
\mathbb C Ensemble des nombres complexes \mathbb C représente \{a+b\cdot i / a\in \R \wedge b\in \R\} i\in \mathbb C
« C »
Nombre
<\,
>\,
<
>
Comparaison x < y signifie que x est strictement inférieur à y (ou x est inférieur à y).
x > y signifie que x est strictement supérieur à y (ou x est supérieur à y).
x<y\Leftrightarrow y>x
« est strictement inférieur à », « est strictement supérieur à »
Relation d'ordre
\leqslant
\geqslant
≤ ou ⩽
≥ ou ⩾
Comparaison x\leqslant y signifie que x est inférieur ou égal à y.
x\geqslant y signifie que x est supérieur ou égal à y.
x\geqslant 1\Rightarrow x^2\geqslant x
« est inférieur ou égal à » ; « est supérieur ou égal à »
Relation d'ordre
+\, + Addition 4 + 6 = 10 signifie que si quatre est ajouté à six, alors la somme ou le résultat est égal à dix. 43 + 65 = 108
2 + 7 = 9
« plus »
Arithmétique
-\, - Soustraction 9 - 4 = 5 signifie que si quatre est ôté (retranché) de neuf, alors le résultat est égal à 5. Le signe moins peut aussi être placé immédiatement à gauche d'un nombre pour le rendre négatif. Par exemple, 5 + (-3) = 2 signifie que si cinq et le nombre négatif moins trois, sont ajoutés, alors le résultat est égal à deux. 87 - 36 = 51
« moins »
Arithmétique
\times × Multiplication 3 × 2 = 6 signifie que si trois est multiplié par deux, alors le produit est égal à six. 23 × 11 = 253
« fois »
Arithmétique
\cdot /\cdot ÷ Division 8 ÷ 4 = 2 signifie que huit divisé par quatre est égal à deux. 100 ÷ 4 = 25
« divisé par »
Arithmétique
{\cdot \over \cdot} / fraction {9 \over 4} représente la fraction neuf quarts. / peut être aussi utilisé pour représenter la division. {100 \over 25} = 4
« sur »
Arithmétique Nombre
\approx et \simeq ≈ ou ≃ Approximation e\approx 2,718 à 10-3 près signifie qu'une valeur approchée de e à 10-3 près est 2,718. \pi \approx 3,1415926 à 10-7 près.
« approximativement égal à »
Nombre réel
\sqrt{ } Racine carrée \sqrt x représente le nombre réel positif dont le carré est égal à x. \sqrt 4=2
\sqrt {x^2}= \left|x\right|
« Racine carrée de ... »
Nombre
\infty Infini +\infty et -\infty sont des éléments de la droite réelle achevée. \infty apparaît dans les calculs de limites. \infty est un point adjoint au plan complexe pour le rendre isomorphe à une sphère (sphère de Riemann) \lim_{x\to 0} {1\over |x|}= \infty
« Infini »
Nombre
\pi\, π π π est le rapport de la circonférence d'un cercle à son diamètre. A=\pi \cdot r^2 est l'aire d'un disque de rayon r
« Pi »
Géométrie euclidienne
\varphi ϕ ou φ « nombre d'or » \varphi = \frac{1 + \sqrt{5}}{2} \simeq 1,618
e e « e » e est la base des logarithmes naturels. exp(1) = e ≈ 2,718
\left|\cdot \right| | | Valeur absolue ou module d'un nombre complexe ou cardinal d'un ensemble \left|x\right| désigne la valeur absolue de x (ou le module de x).
| A | désigne le cardinal de l'ensemble A et représente, lorsque A est fini, le nombre d'éléments de A.
\left|a+b\cdot i\right|=\sqrt {a^2+b^2}
« Valeur absolue de... », « module de ... » ; « cardinal de ... »
Nombre ou Théorie des ensembles
\sum Somme \sum_{k=1}^n a_k se lit « somme de ak pour k de 1 à n », et représente a1 + a2 + ... + an \sum_{k=1}^4 k^2
= 12 + 22 + 32 + 42
= 30
« Somme de ... pour ... de ... à ... »
Arithmétique
\prod Produit \prod_{k=1}^n a_k se lit « produit de ak pour k de 1 à n », et représente : a1·a2·...·an \prod_{k=1}^4 (k+2)
=3\times 4\times 5\times 6=360
« Produit de .. pour .. de .. à .. »
Arithmétique
\int dx ∫,∬,∭,∮,∯ ou ∰ Intégrale \int_a^b f(x) dx se lit « Intégrale de a à b de f de x dx », et représente l'aire algébrique du domaine délimité par la courbe représentative de f, l'axe des abscisses et les droites d'équation x = a et x = b
\int f(x) dx se lit « intégrale de f de x dx, et représente une primitive de f
\int_0^b x^2 dx = b^3/3
\int x^2 dx = x^3/3+C (C désignant une constante)
« Intégrale (de .. à ..) de .. d-.. »
Analyse
\left\lfloor x \right\rfloor \left\lfloor  \right\rfloor Partie entière \left\lfloor x \right\rfloor se lit « Partie entière de x», et représente la partie entière inférieure de x \left\lfloor 2,9 \right\rfloor = 2

\left\lfloor 2,3 \right\rfloor = 2
« Partie entière de .. »
Nombre
\left\lceil x \right\rceil \left\lceil  \right\rceil Partie entière par excès \left\lceil x \right\rceil se lit « Partie entière par excès de x », et représente l'entier supérieur à x \left\lceil 2,9 \right\rceil = 3

\left\lceil 2,3 \right\rceil = 3
« Partie entière par excès de .. »
Nombre
Page générée en 0.209 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise