Théorie du chaos - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Poincaré et après

Poincaré & la stabilité du système solaire

Un siècle après Laplace, Henri Poincaré s'est attelé au problème de la stabilité du système solaire. Entre 1880 et 1886, il commence par publier une série de mémoires intitulés : «Sur les courbes définies par une équation différentielle» qui donne naissance à l'analyse qualitative des équations différentielles. Poincaré y introduit notamment la notion capitale de portrait de phase, qui résume géométriquement l'aspect des solutions dans l'espace des phases du système. Puis, en 1890, il publie le fameux mémoire intitulé : «Sur le problème des trois corps et les équations de la dynamique», qui lui vaudra le prix du roi Oscar, roi de Norvège et de Suède et passionné de mathématiques. L'histoire est célèbre : le mémoire lauréat comportait une erreur détectée par le jeune mathématicien Phrägmen alors qu'il prépare le manuscrit pour l'imprimeur. Cette erreur obligera Poincaré à procéder à de profonds remaniements dans son mémoire, et aussi à rembourser les frais d'impression du premier mémoire, une somme supérieure de quelque mille couronnes au prix qu'il avait reçu. Mais cette erreur fut féconde, car en lieu et place de la stabilité du système solaire, Poincaré découvrit le chaos potentiel caché dans les équations de la dynamique.

Plus récemment, des calculs numériques effectués par l'astronome Jacques Laskar en 1989-1990, puis confirmés par Sussman & Wisdom en 1992, ont montré que le système solaire est chaotique, avec un horizon de Lyapounov de l'ordre de 200 millions d'années.

L'école russe des années 1890-1950

Lyapounov & la stabilité du mouvement

Le 12 octobre 1892, Lyapounov soutient à l'Université de Moscou une thèse de doctorat intitulée : Le problème général de la stabilité du mouvement. Il y introduit l'idée de mesurer la divergence possible entre deux orbites issues de conditions initiales voisines. Lorsque cette divergence croit exponentiellement avec le temps pour presque toutes les conditions initiales voisines d'un point donné, on a le phénomène de sensibilité aux conditions initiales, idée à laquelle sont attachés les exposants de Lyapounov, qui donnent une mesure quantitative de cette divergence exponentielle locale.

L'école de Gorki : 1930-1940

  • Andronov
  • Pontryagin
  • Lefschetz

L'oscillateur de Van der Pol

Émergence & développement de la théorie ergodique

  • Émergence
  • Birkhoff
  • Von Neumann
  • Koopman
  • Hopf
  • Hedlung

Prédictibilité & calculabilité

Norbert Wiener et John von Neumann se sont préoccupés pourtant de la possibilité de prédire par le calcul une situation future à partir d'un état présent. Si Wiener jugeait la tâche ardue, voire impossible puisque de « petites causes » qu'on omettrait nécessairement d'inclure dans le modèle peuvent produire de « grands effets » (il donna l'image du « flocon de neige déclenchant une avalanche »), Von Neumann y voyait une occasion exceptionnelle pour les nouveaux appareils que l'on n'avait pas encore baptisés ordinateurs : « Si un flocon de neige peut déclencher une avalanche », répondait-il à Wiener, « alors la prédiction par le calcul nous dira très exactement quel flocon de neige précis intercepter pour que l'avalanche ne se produise pas ! » Wiener se montra sceptique : un état hypercritique restait un état hypercritique, et supprimer ce flocon particulier ne ferait à son avis que « permettre à un autre de le remplacer dans cette fonction ». Selon lui, rien ne serait donc résolu (point de vue admis aujourd'hui). Les deux hommes ne poussèrent pas plus avant ce différend.

Lorenz & la météorologie

Présentation

En 1963, le météorologue Lorenz mit en évidence le caractère vraisemblablement chaotique de la météorologie.

Mathématiquement, le couplage de l'atmosphère avec l'océan est décrit par le système d'équations aux dérivées partielles couplées de Navier-Stokes de la mécanique des fluides. Ce système d'équations était beaucoup trop compliqué à résoudre numériquement pour les premiers ordinateurs existant au temps de Lorenz. Celui-ci eut donc l'idée de chercher un modèle très simplifié de ces équations pour étudier une situation physique particulière : le phénomène de convection de Rayleigh-Bénard. Il aboutit alors à un système dynamique différentiel possédant seulement trois degrés de liberté, beaucoup plus simple à intégrer numériquement que les équations de départ. Il observa alors, par pur hasard, qu'une modification minime des données initiales (de l'ordre de un pour mille) entraînait des résultats très différents. Lorenz venait de mettre en exergue la sensibilité aux conditions initiales (déjà observée en analyse numérique dans des résolutions d'équations différentielles sur ordinateur, entre autres par Marion Créhange à l'Université de Nancy).

La métaphore du papillon

En 1972, Lorenz fait une conférence à l'American Association for the Advancement of Science intitulée: « Predictability: Does the Flap of a Butterfly's Wings in Brazil Set off a Tornado in Texas? », qui se traduit en français par :

« Prédictibilité : le battement d'ailes d'un papillon au Brésil provoque-t-il une tornade au Texas ? ».

Cette métaphore, devenue emblématique du phénomène de sensibilité aux conditions initiales, est souvent interprétée à tort de façon causale : ce serait le battement d'aile du papillon qui déclencherait la tempête. Il n'en est rien ; Lorenz écrit en effet:

« De crainte que le seul fait de demander, suivant le titre de cet article, "un battement d'aile de papillon au Brésil peut-il déclencher une tornade au Texas ?", fasse douter de mon sérieux, sans même parler d'une réponse affirmative, je mettrai cette question en perspective en avançant les deux propositions suivantes :

  • Si un seul battement d'ailes d'un papillon peut avoir pour effet le déclenchement d'une tornade, alors, il en va ainsi également de tous les battements précédents et subséquents de ses ailes, comme de ceux de millions d'autres papillons, pour ne pas mentionner les activités d'innombrables créatures plus puissantes, en particulier de notre propre espèce.
  • Si le battement d'ailes d'un papillon peut déclencher une tornade, il peut aussi l'empêcher. ».
Il serait plus juste de dire que le battement d'ailes du papillon "induit" la tornade, il ne la provoque pas directement ! Elle est provoquée par des conditions locales, qui sont elles-mêmes "liées" à d'autres, etc . . .
C'est là que les conditions d'apparition de la tornade sont indirectement liées au battement d'ailes du papillon (ainsi qu'à une multitude d'autres effets), et que cette sensibilité aux conditions initiales est justifiée.

Stephen Smale : topologie & stabilité structurelle

L'école russe des années 1950-1980

  • Anososv
  • Sinaï
  • Arnold
Page générée en 0.132 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise