Géométrie analytique
Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

La géométrie analytique est une approche de la géométrie dans laquelle on représente les objets par des équations ou inéquations. Le plan ou l'espace est nécessairement muni d'un repère.

La géométrie analytique permet à l'inverse (En mathématiques, l'inverse d'un élément x d'un ensemble muni d'une loi de composition interne · notée multiplicativement, est un élément y tel...) de représenter des fonctions mathématiques (Les mathématiques constituent un domaine de connaissances abstraites construites à l'aide de raisonnements logiques sur des concepts tels que les nombres, les figures, les structures et les transformations. Les...) sous la forme de courbes, de graphiques. Elle est donc fondamentale (En musique, le mot fondamentale peut renvoyer à plusieurs sens.) pour la physique (La physique (du grec φυσις, la nature) est étymologiquement la « science de la nature ». Dans un sens général et ancien, la...) et l'infographie (L'infographie (aussi appelée faussement image de synthèse, terme qui se rapporte plus spécifiquement à la création d'images à vocation perspectiviste...).

Histoire

L'analyse en géométrie (La géométrie est la partie des mathématiques qui étudie les figures de l'espace de dimension 3 (géométrie euclidienne) et, depuis...)

Le terme de géométrie analytique (La géométrie analytique est une approche de la géométrie dans laquelle on représente les objets par des équations ou inéquations. Le plan ou l'espace est...), par opposition à la géométrie synthétique, se refère aux méthodes d'analyse et synthèse pratiquées par les géomètres grecs. Elle en est progressivement venue à se confondre avec sa méthode privilégiée, la méthode des coordonnées.

Dans les mathématiques grecques, l'analyse consiste à partir de l'objet (De manière générale, le mot objet (du latin objectum, 1361) désigne une entité définie dans un espace à trois dimensions, qui a une fonction précise, et qui peut...) cherché, en supposant son existence, de manière à établir ses propriétés. Il faut poursuivre dans cette voie jusqu'à produire assez de propriétés pour caractériser l'objet. On peut alors renverser la situation (En géographie, la situation est un concept spatial permettant la localisation relative d'un espace par rapport à son environnement proche ou non. Il inscrit un lieu dans un...), en ne faisant plus l'hypothèse d'existence et en l'introduisant effectivement l'objet par le biais des propriétés caractéristiques : c'est la phase (Le mot phase peut avoir plusieurs significations, il employé dans plusieurs domaines et principalement en physique :) de synthèse, qui doit aboutir à la preuve d'existence.

La difficulté pratique qui a limité les progrès des géomètres est le manque d'un formalisme adapté à la description des relations entre grandeurs géométriques. François Viète, à la fin du XVIe siècle unifie le calcul sur les nombres et le calcul sur les grandeurs géométriques à travers un outil (Un outil est un objet finalisé utilisé par un être vivant dans le but d'augmenter son efficacité naturelle dans l'action. Cette augmentation se traduit par la simplification des actions entreprises, par une plus grande...) précieux, le calcul littéral. Le principe de la réduction au calcul algébrique (C'est vers le XVIe siècle que l'on voit avec le calcul algébrique, apparaître les mathématiques « modernes ». Auparavant il...) est posé, il manque encore une méthode systématique (En sciences de la vie et en histoire naturelle, la systématique est la science qui a pour objet de dénombrer et de classer les taxons dans un certain ordre, basé sur des principes divers. Elle ne...) pour l'exploiter.

La méthode des coordonnées

René Descartes propose de résoudre les problèmes de géométrie par le recours systématique au calcul algébrique. Dans sa Géométrie de 1637, il en donne le principe. Il s'agit de représenter grandeurs connues et inconnues par des lettres, et de trouver autant de relations entre grandeurs connues et inconnues qu'il y a d'inconnues au problème. On y reconnaît bien une démarche analytique, conduisant à des systèmes d'équations qu'il s'agit de réduire à une seule équation (En mathématiques, une équation est une égalité qui lie différentes quantités, généralement pour poser le problème de leur identité. Résoudre l'équation consiste à déterminer toutes les...). Descartes donne des interprétations des cas sur- ou sous-déterminés. Ses manipulations, cependant, se limitent aux équations algébriques, qu'il classe par degré (Le mot degré a plusieurs significations, il est notamment employé dans les domaines suivants :), et ne peuvent être appliquées aux courbes qu'il qualifie de mécaniques (aujourd'hui dites transcendantes).

Pierre de Fermat (Pierre de Fermat, né le 20 août 1601, à Beaumont-de-Lomagne, près de Montauban, et décédé le 12 janvier 1665 à Castres, était un juriste et mathématicien français,...) est le premier à faire, à la même époque, un usage (L’usage est l'action de se servir de quelque chose.) systématique des coordonnées proprement dites pour résoudre les problèmes de lieux géométriques. Il fait intervenir notamment les premières équations de droites, paraboles ou hyperboles. Il présente ces idées dans Ad locus planos et solidos isagoge, en 1636, texte publié après sa mort (La mort est l'état définitif d'un organisme biologique qui cesse de vivre (même si on a pu parler de la mort dans un sens cosmique plus général, incluant par exemple la mort des...).

Dans les notations de Descartes, contrairement à Fermat, les constantes sont continuellement notées a, b, c, d, ... et les variables x, y, z. Il s'oppose en cela à la tradition de l'époque et un lecteur d'aujourd'hui s'en trouve moins dérouté.

Géométrie analytique plane (La plane est un outil pour le travail du bois. Elle est composée d'une lame semblable à celle d'un couteau, munie de deux poignées, à chaque extrémité de la lame. Elle permet...)

Le plan affine (En mathématiques, affine peut correspondre à :) est muni d'un repère (O,\vec{i},\vec{j}) ; x désigne l'abscisse d'un point (Graphie), et y l'ordonnée de ce point.

Droite

Une droite affine (c'est-à-dire une droite au sens (SENS (Strategies for Engineered Negligible Senescence) est un projet scientifique qui a pour but l'extension radicale de l'espérance de vie humaine. Par une...) habituel, un ensemble (En théorie des ensembles, un ensemble désigne intuitivement une collection d’objets (les éléments de l'ensemble), « une multitude qui peut être comprise...) de points) est représentée par une équation du premier degré à deux inconnues :

ax + by + c = 0 (1)

Si c est nul, alors la droite passe par l'origine O. Si deux droites sont parallèles, alors leurs coefficients a et b sont proportionnels. Si b n'est pas nul, cette équation peut se réécrire :

y = a′·x + b′

a′ = - a/b est appelé le coefficient (En mathématiques un coefficient est un facteur multiplicatif qui dépend d'un certain objet, comme une variable (par exemple, les coefficients d'un...) directeur ou la pente de la droite, et b′ = - c/b est appelé ordonnée à l'origine (offset ou intercept en anglais) ; deux droites parallèles (Deux droites sont dites parallèles si elles n'ont aucun point commun ou si elles sont confondues. Deux droites ayant un et un seul point commun sont dites...) ont le même coefficient directeur. Avec cette forme là, on voit aisément que la droite passe par le point (0,b′), qui est également appelé ordonnée à l'origine (le terme désigne donc à la fois le point et l'ordonnée de ce point). Si a est nul, on a une droite horizontale

y = b′

passant par le point (0,b′). Si b est nul, on a une droite verticale (La verticale est une droite parallèle à la direction de la pesanteur, donnée notamment par le fil à plomb.)

x = - c/a

passant par le point (- c/a,0).

Pour tracer une droite à partir de son équation, il suffit de connaître deux points. Le plus simple est de prendre l'intersection avec les axes, c'est-à-dire de considérer successivement x = 0 et y = 0 (sauf si la droite est parallèle à un axe, auquel cas le tracer est trivial). On peut aussi prendre l'ordonnée à l'origine et un point " éloigné " (c'est-à-dire au bord de la figure tracée sur le papier (Le papier (du latin papyrus) est une matière fabriquée à partir de fibres cellulosiques végétales et animales. Il se présente sous forme de feuilles...), par exemple considérer x = 10 si l'on va jusqu'à 10), ou encore deux points éloignés (un à chaque bord de la figure) ; en effet, plus les points sont éloignés, plus le tracé de la droite est précis.

Une droite vectorielle (c'est-à-dire un ensemble de vecteurs colinéaires, proportionnels entre eux) est représentée simplement par une équation de droite avec c nul :

au1 + bu2 = 0

u1 et u2 sont les composantes des vecteurs. On en déduit que pour une droite affine ou vectorielle, le vecteur (En mathématiques, un vecteur est un élément d'un espace vectoriel, ce qui permet d'effectuer des opérations d'addition et de multiplication par un scalaire. Un n-uplet peut constituer un...) de composantes

\vec{u} = \begin{pmatrix} -b \\ a \end{pmatrix}

est un vecteur directeur de la droite. Si le repère est orthonormé, d'après une propriété du produit scalaire (En géométrie vectorielle, le produit scalaire est une opération algébrique s'ajoutant aux lois définissant la structure d'espace vectoriel. À deux vecteurs elle associe leur produit, qui est un nombre (ou scalaire). Elle...), le vecteur

\vec{N} = \begin{pmatrix} a \\ b \end{pmatrix}

est un vecteur normal à la droite.

Quel que soit le repère, si A (xA,yA) est un point de la droite et \vec{u} un vecteur directeur, alors pour tout (Le tout compris comme ensemble de ce qui existe est souvent interprété comme le monde ou l'univers.) point M (xM,yM) de la droite, on a

\overrightarrow{AM} = k \cdot \vec{u},\ k \in \mathbb{R}

puisque \overrightarrow{AM} est colinéaire à \vec{u}. Ceci nous donne une équation paramétrique de la droite :

\left\{\begin{matrix} (x_M - x_A) = k \cdot u_1 \\ (y_M - y_A) = k \cdot u_2 \end{matrix}\right.

qui peut s'écrire

\left\{\begin{matrix} x_M = u_1 \cdot k + x_A \\ y_M = u_2 \cdot k + y_A \end{matrix}\right. (2)

en éliminant le paramètre (Un paramètre est au sens large un élément d'information à prendre en compte pour prendre une décision ou pour effectuer un calcul.) k, on retrouve une équation de la forme (1).

Point

Un point est représenté par un système de deux équations du premier degré à deux inconnues :

\left\{\begin{matrix} x = a \\ y = b \end{matrix}\right.

ce qui est logique (La logique (du grec logikê, dérivé de logos (λόγος), terme inventé par Xénocrate signifiant à la fois raison, langage, et raisonnement) est dans une première...) puisque, un point étant l'intersection de deux droites non-parallèles, ses coordonnées doivent vérifier les équations des deux droites : la réduction de ce système d'équations donne la forme ci-dessus. Ceci est bien évidemment la représentation du point (a,b).

Demi-plan

Un demi-plan est représenté par une inéquation (Une inéquation est une question, sous forme d'une inégalité entre deux quantités algébriques. Cette inégalité contient des inconnues. Résoudre une inéquation, c'est trouver les valeurs...) du premier degré à deux inconnues :

ax + by + cz > 0

si l'on remplace le signe > par un signe =, on obtient l'équation de la droite qui délimite le demi-plan ; si l'on remplace le signe > par le signe < (ou si l'on inverse les signe des coefficients), on obtient le demi-plan complémentaire.

Demi-droite (Une demi-droite est comme son nom l’indique la moitié d’une droite, à savoir l’ensemble des points d’une droite à partir d'un point M de celle-ci. Par exemple la demi-droite [MN) a pour origine M et passe...)

Une demi-droite est caractérisée par une équation et une inéquation

\left\{\begin{matrix} ax + by + c = 0 \\ a'x + b'y + cz > 0 \end{matrix}\right.

avec au moins a ≠a′ ou b ≠b′. Une demi-droite est en effet l'intersection d'une droite et d'un demi-plan délimité par une droite non parallèle à la première. La résolution du système obtenu en remplaçant le signe " > " par un signe " = " donne les coordonnées du point extrémité de la demi-droite, c'est-à-dire les coordonnées du point A d'une demi-droite [AB). Si a′ est non-nul, on peut se ramener à un système du type

\left\{\begin{matrix} ax + by + c = 0 \\ x > d \end{matrix}\right. \ \mathrm{ou} \ \left\{\begin{matrix} ax + by + c = 0 \\ x < d \end{matrix}\right.

(les deux systèmes représentant des demi-droites complémentaires), sinon à un système du type

\left\{\begin{matrix} ax + by + c = 0 \\ y > d \end{matrix}\right. \ \mathrm{ou} \ \left\{\begin{matrix} ax + by + c = 0 \\ y < d \end{matrix}\right.

Avec une équation paramétrique, cela revient à l'équation (2) en rajoutant la condition k > 0 ou k < 0.

Le cercle (Un cercle est une courbe plane fermée constituée des points situés à égale distance d'un point nommé centre. La valeur de cette distance est...) et le disque (Le mot disque est employé, aussi bien en géométrie que dans la vie courante, pour désigner une forme ronde et régulière, à l'image d'un palet — discus en latin.)

Le cercle de centre A et de rayon r est l'ensemble des points situés à une distance r de A. Son équation est donc :

(xxA)2 + (yyA)2 = r2

que l'on peut écrire :

y = y_A + \sqrt{r^2 - (x-x_A)^2},\ x \in [x_A-r,x_A+r]

Cette forme porte le nom " d'équation cartésienne du cercle ". Son équation paramétrique est

\left\{\begin{matrix} x = x_A + r \cdot \cos \theta \\ y = y_A + r \cdot \sin \theta \end{matrix}\right.

où θ est un réel, qui peut être pris sur un intervalle de largeur (La largeur d’un objet représente sa dimension perpendiculaire à sa longueur, soit la mesure la plus étroite de sa face. En géométrie plane, la...) 2π ; on prend en général ]-π,π] ou [0,2π[. L'équation du disque s'obtient en remplaçant le signe " égal " par une signe " inférieur ou égal ".

Géométrie analytique dans l'espace

L'espace affine (Historiquement, la notion d’espace affine est issue du choc dû à la découverte de nouvelles géométries parfaitement cohérentes, mais différant de celle d'Euclide par l'axiome des parallèles. Elles remettaient...) est muni d'un repère (O,\vec{i},\vec{j},\vec{k}) ; x désigne l'abscisse d'un point, y l'ordonnée et z la cote.

Plan

Un plan affine (c'est-à-dire un plan au sens habituel en géométrie, composé de points) est représentée par une équation du premier degré à trois inconnues :

ax + by + cz + d = 0 (3)

Si deux plans sont parallèles entre eux, alors leurs coefficients a, b et c sont proportionnels. Si d est nul, alors le plan passe par O. Si c est non nul, l'équation peut s'écrire

z = a′·x + b′·y + c′

avec a′ = - a/c, b′ = - b/c et c′ = - d/c. Si c est nul, alors on a un plan vertical (Le vertical (rare), ou style vertical, est un style d’écriture musicale consistant en accords plaqués.).

Un plan vectoriel (c'est-à-dire un ensemble de vecteurs coplanaires) est représenté par une équation

au1 + bu2 + cu3 = 0

u1, u2 et u3 sont les composantes d'un vecteur. Les vecteurs suivants sont des vecteurs du plan vectoriel, et si au moins deux coefficients de l'équation du plan sont non nuls, deux de ces vecteurs forment une base du plan :

\vec{u} = \begin{pmatrix} - b \\ a \\ 0 \end{pmatrix}
\vec{v} = \begin{pmatrix} 0 \\ - c \\ b \end{pmatrix}
\vec{w} = \begin{pmatrix} - c \\ 0 \\ a \end{pmatrix}

(la base obtenue n'est a priori pas orthonormée). Ces vecteurs forment aussi des vecteurs d'un plan affine dont l'équation a les mêmes coefficients a, b et c que l'équation du plan vectoriel.

Si deux des coefficients sont nuls, alors l'équation se réduit à l'une des trois formes suivantes :

u1 = 0, qui représente le plan vectoriel (\vec{j},\vec{k}) ;
u2 = 0, qui représente le plan vectoriel (\vec{i},\vec{k}) ;
u3 = 0, qui représente le plan vectoriel (\vec{i},\vec{j}).

De même,

ax + d = 0 représente un plan affine parallèle à (\vec{j},\vec{k}), dont l'équation peut s'écrire x = - d/a
by + d = 0 représente un plan affine parallèle à (\vec{i},\vec{k}), dont l'équation peut s'écrire y = - d/b
cz + d = 0 représente un plan affine parallèle à (\vec{i},\vec{j}), dont l'équation peut s'écrire z = - d/c.

Dans tous les cas, si le repère de l'espace est orthonormal, le vecteur

\vec{N} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}

est un vecteur normal au plan

Quel que soit le repère, si le plan passe par un point A (xA,yA,zA) et est muni d'une base quelconque (\vec{u},\vec{v}), alors pour tout point M (xM,yM,zM), on a

\overrightarrow{AM} = k \cdot \vec{u} + t \cdot \vec{v},\ (k,t) \in \mathbb{R}^2

puisque \overrightarrow{AM}, \vec{u} et \vec{v} sont coplanaires. Ceci conduit à l'équation paramétrique

\left\{\begin{matrix} (x_M - x_A) = k \cdot u_1 + t \cdot v_1 \\ (y_M - y_A) = k \cdot u_2 + t \cdot v_2 \\ (z_M - z_A) = k \cdot u_3 + t \cdot v_3 \end{matrix} \right. \Leftrightarrow \left\{\begin{matrix} x_M = u_1 \cdot k + v_1 \cdot t + x_A \\ y_M  = u_2 \cdot k + v_2 \cdot t + y_A \\ z_M = u_3 \cdot k + v_3 \cdot t + z_A \end{matrix} \right. (4)

Droite

Une droite étant l'intersection de deux plans non-parallèles, elle est décrite par un système de deux équations du premier degré à trois inconnues

\left\{\begin{matrix} ax + by + cz + d = 0 \\ a'x + b'y + c'z + d' = 0 \end{matrix}\right. (5)

La droite est contenue dans les deux plans, elle est donc orthogonale aux vecteurs normaux \vec{N_1} et \vec{N_2} des deux plans. Le produit vectoriel (Le produit vectoriel est une opération vectorielle effectuée dans les espaces euclidiens orientés de dimension trois[1]. Le formalisme utilisé actuellement est apparu en 1881 dans un manuel d'analyse...) \vec{u} = \vec{N_1} \wedge \vec{N_2} des vecteurs normaux fournit donc un vecteur directeur de la droite. Si le repère est orthonormé direct, le vecteur \vec{u} a pour composantes :

\vec{u} = \begin{pmatrix} bc'-b'c \\ ca'-c'a \\ ab'-a'b \end{pmatrix}

Si par ailleurs on connaît un point A (xA,yA,zA) et un vecteur directeur \vec{u} de la droite, alors si M (xM,yM,zM) est un point de la droite, il vérifie :

\overrightarrow{AM} = k \cdot \vec{u},\ k \in \mathbb{R}

puisque \overrightarrow{AM} et \vec{u} sont colinéaires. On obtient donc l'équation paramétrique

\left\{\begin{matrix} x_M = u_1 \cdot k + x_A \\ y_M = u_2 \cdot k + y_A \\ z_M = u_3 \cdot k + z_A \end{matrix}\right. (6)

Point

Un point est décrit par un système de trois équations du premier degré à trois inconnues :

\left\{\begin{matrix} x = a \\ y = b \\ z = c \end{matrix} \right.

Le point étant l'intersection de trois plans concourants, ses coordonnées doivent vérifier les trois équations ; la réduction de ce système donne la forme ci-dessus. Ce système d'équations représente bien sûr le point (a,b,c).

Page générée en 0.054 seconde(s) - site hébergé chez Amen
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
Ce site est édité par Techno-Science.net - A propos - Informations légales
Partenaire: HD-Numérique