Un nombre entier naturel est en général simplement représenté en binaire (en base 2), avec la règle de conversion classique. À la différence des entiers naturels, les entiers informatiques sont finis. On ne peut donc représenter ainsi que les nombres tenant dans l'intervalle défini par le nombre de bits disponible. Lorsque l'on veut représenter un entier relatif, on réserve un bit pour désigner le signe (en général le bit le plus à gauche) ; on parle alors d'« entier signé ». La plupart du temps, les nombres négatifs seront codés selon la règle du complément à deux.
Par exemple, avec un octet on peut représenter :
On notera que pour comparer deux entiers relatifs codés ainsi, il suffit de réaliser un OU exclusif avec (10000000 en binaire) sur chacun avant le test.
D'autres types sont également usités pour représenter les entiers, il s'agit du codage BCD de forme étendue (un chiffre sur un octet), ou compactée (un chiffre sur 4 bits). Bien que ces formats soient moins performants pour des calculs que le système binaire décrit supra car ils nécessitent des instructions supplémentaires pour remettre en forme le résultat des opérations arithmétiques réalisées, ils sont toujours employés sur de nombreux systèmes (Ordinateur central, SGBD, ... ) et gérés par les processeurs, car ils ne sont pas limités par le nombre de bits utilisés par le processeur pour l'arithmétique binaires (8 bits, 16 bits, 32 bits, 64 bits, ...) et qu'ils conservent la précision unitaire contrairement aux nombres à virgule flottante.
Pour les nombres fractionnaires, la convention de numération veut qu'en base n, « 0,a » désigne a·1/n (=a·n-1), « 0,0a » désigne a·1/n² (=a·n-2)... Par exemple en base 10 (n = 10), « 0,005 » désigne 5·10-3.
Ainsi, le nombre 0,001 en binaire (n = 2) désigne 1·2-3=0,125.
Donc en informatique, la première solution consiste à attribuer un certain nombre de bits à droite aux puissances négatives de 2.
Une autre solution consiste à utiliser le codage BCD comme pour les entiers en considérant le positionnement de la virgule à une position fixe, par exemple, pour un codage sur 10 chiffres, les huit premiers chiffres contiennent la partie entière et les deux derniers la partie décimale. Ce positionnement est totalement arbitraire et doit être géré par le programmeur pour les affichages ou les calculs, surtout pour les multiplications ou lorsque deux nombres ne sont pas définis avec le même nombre de chiffres après la virgule.
C'est ce type de donnée qui est généralement utilisé dans les SGBD pour le type DECIMAL.
La base de la représentation des images est la géométrie analytique.
On peut découper une image en points élémentaires, ou « pixel », et attribuer une couleur à ce pixel. La couleur est représentée par un nombre, la correspondance couleur → nombre étant faite par une « palette ».
Il est inutile de donner les coordonnées des points : si l'on donne la largeur de l'image en nombre n de points, alors les n premiers points représentent la première ligne, les points n+1 à 2n représentent la deuxième ligne… Il suffit alors de fixer par convention l'ordre de balayage, en l'occurrence l'ordre de lecture occidental (de gauche à droite et de haut en bas).
Ceci donne une image au format carte de points, souvent appelée image bitmap. C'est donc un canevas de points dont chacun se voit attribuer une valeur colorée. Les grandes différences entre les formats existants sont la profondeur de couleurs (1 bit : noir ou blanc, 8 bits : 256 couleurs, 24 bits : 16 millions de couleurs…) et le type de compression (sans compression, ou raw, avec une compression par motifs, avec une compression destructive…)
Par exemple, prenons une carte noir et blanc (1 pour blanc, 0 pour noir) définissant une image large de cinq points par la suite de chiffres suivante :
1000101010001000101010001
il faut découper cette carte par groupes de 5 bits :
10001 01010 00100 01010 10001
ce qui nous donne le dessin d'un « X » blanc sur fond noir.
Le format des données doit donc inclure, outre la liste des points, la largeur de l'image et la description de la palette ; ceci se fait en général en début de fichier (on parle d'« en-tête » de fichier).
Une image au format vectoriel est une image qui se décrit par des ensembles de coordonnées mathématiques et non par un canevas de points. Par exemple,
En outre, des informations sur le tracé sont nécessaires : les attributs graphiques sont l'épaisseur, le style (continu ou pointillés), la couleur du trait, sa transparence, etc.
Une image vectorielle est donc un ensemble de coordonnées, d'attributs et de commandes que le programme d'affichage (à l'écran ou sur papier) se charge d'interpréter.
Pour des images pouvant être réduites facilement à des formes géométriques (typographisme, cartographie...), le format vectoriel est extrêmement économe.
La particularité des formats vectoriels réside dans le fait que leur rendu final ne dépend que de la résolution du périphérique de sortie. Ce type d'image peut aussi être agrandi sans effets gênants ; il n'y a pas d'effet de « pixellisation » (les lignes diagonales ou courbes n'apparaissent pas sous forme d'escalier).
Quelques formats vectoriels célèbres : VML, SVG, Adobe PDF (Acrobat), Adobe Illustrator, encapsuled postscript EPS, Quark QXD, Silverlight et Macromedia Flash (formats d'animation vectorielle), AutoCAD DXF.