Les principaux éléments d'une fusée à propergol liquide sont :
L'indice de structure d'une fusée est le rapport entre la masse à vide d'un étage de fusée (réservoirs, structure, moteur, ...) et sa masse au décollage. Plus cet indice est faible, plus la fusée est performante. Pour y parvenir, la fusée est construite avec des matériaux légers et la structure est optimisée en particulier par la mise en œuvre de réservoirs structuraux.
La paroi latérale des réservoirs des étages principaux constitue en même temps la structure de la fusée. Dans le cas d'étage à ergols liquides, les réservoirs sont constitués de plusieurs viroles de faible épaisseur (2 mm pour l'étage cryogénique de la fusée Ariane 5) soudés entre elles. La tenue aux efforts mécaniques est assurée en grande partie par la mise en pression des réservoirs. Les parties de la fusée non pressurisés (inter-étages, inter-réservoirs et les bâtis-moteurs) sont constitués de structures raidies donc plus lourdes.
Les principaux matériaux utilisés pour la construction d'une fusée sont des alliages d'aluminium qui ont de bonnes caractéristiques mécaniques, sont relativement légers, peu coûteux et assez faciles à travailler. Les alliages d'acier, malgré leur densité très pénalisante, sont utilisés principalement pour l'enveloppe des propulseurs à poudre qui subissent des fortes pressions ; le recours à l'acier entraine un indice de structure élevé (11,5 % pour les propulseurs à poudre d'Ariane 5 contre 7,3% pour l'étage cryotechnique). Les composites (fibres de carbone, kevlar, verre), plus coûteux, ont d'excellentes caractéristiques mécaniques et sont utilisés dans la partie haute de la fusée pour la coiffe, la structure porteuse des charges utiles et pour les petits réservoirs.
Un fusée comprend différents systèmes qui permettent son fonctionnement. Les boitiers de commande de ces systèmes sont regroupés dans la case à équipement généralement logée juste sous la charge utile sur la périphérie d'un anneau faisant la jonction avec les étages propulsifs. Les capteurs, les actuateurs, les charges pyrotechniques sont eux répartis sur l'ensemble de la fusée.
La charge utile est positionnée au sommet de la fusée au-dessus de tous les étages propulsifs. Elle est constituée d'un ou plusieurs satellites qui sont recouverts d'une coiffe à la forme aérodynamique qui les protège tant que la fusée traverse l'atmosphère et qui est larguée par la suite pour réduire la masse propulsée.
Lorsque la fusée transporte des astronautes, elle doit pouvoir préserver la vie des passagers au cas où le vol se passe mal. Si au-dessus d'une certaine altitude il suffit que la capsule qui transporte les passagers se sépare de la fusée à l'aide de charges pyrotechniques puis entame la phase de descente prévue initialement pour le retour, ce dispositif ne peut pas fonctionner au-dessous lorsque la fusée est trop basse.
La tour de sauvetage placée au sommet du lanceur est une fusée miniature qui, en cas de problème, est mise à feu et arrache la capsule du corps de la fusée en l'éloignant de la trajectoire fusée tout en lui faisant prendre une hauteur minimum pour que le parachute puisse être ouvert et dispose de suffisamment de temps pour freiner le vaisseau spatial avant qu'il atteigne le sol. Initialement, pour les premiers vols spatiaux habités (Gemini, Vostok), le sauvetage de l'équipage en cas d'explosion de la fusée était confié à un siège éjectable. Ce dispositif était lourd (la surcharge est conservée tout au long du vol) et ne permettait pas d'écarter suffisamment les cosmonautes de la zone dangereuse lorsque la fusée utilisait des carburants hypergoliques (Oxygène/Hydrogène).