Substitution électrophile aromatique - Définition et Explications

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

La substitution électrophile aromatique (ou SEA, voire SEAr) est une réaction organique au cours de laquelle un atome, en règle générale d'hydrogène, ou un groupe d'atome, fixé à un cycle aromatique est substitué par un groupement électrophile. Cette réaction, la principale dans le groupe des substitutions électrophiles, est très importante en chimie organique (La chimie organique est une branche de la chimie concernant la description et l'étude d'une grande classe de molécules à base de carbone : les composés organiques.), tant dans l'industrie qu'en laboratoire. Elle permet de préparer des composés aromatiques substitués par une grande variété de groupements fonctionnels suivant le bilan :

ArH + EX → ArE + HX

avec Ar un composé aromatique et E un groupement électrophile.

Mécanisme général de la réaction

Mécanisme général de la substitution électrophile aromatique (La substitution électrophile aromatique (ou SEA, voire SEAr) est une réaction organique au cours de laquelle un atome, en règle générale d'hydrogène, ou un groupe d'atome,...)

La première étape du mécanisme est une addition (L'addition est une opération élémentaire, permettant notamment de décrire la réunion de quantités ou l'adjonction de grandeurs extensives de même nature, comme les longueurs, les aires, ou les...) au cours de laquelle le composé électrophile A+ réagit avec un doublet électronique du cycle aromatique. Cette étape nécessite généralement une catalyse (La catalyse est l'action d'une substance appelée catalyseur sur une transformation chimique dans le but de modifier sa vitesse de réaction. Le catalyseur, qui est en...) par un acide de Lewis (Un acide de Lewis (du nom du chimiste américain Gilbert Newton Lewis) est une entité chimique dont un de ses atomes la constituant possède une lacune...). Cette addition conduit à la formation d'un carbocation cyclohexadiénil connu sous le nom d’intermédiaire de Wheland (ou complexe σ, ou encore ion arénium). Ce carbocation est instable, puisqu'il correspond à la fois à la présence d'une charge (La charge utile (payload en anglais ; la charge payante) représente ce qui est effectivement transporté par un moyen de transport donné, et qui donne lieu à un paiement ou un bénéfice non...) sur la molécule (Une molécule est un assemblage chimique électriquement neutre d'au moins deux atomes, qui peut exister à l'état libre, et qui...) et à une perte d'aromaticité. Il est néanmoins stabilisé par mésomérie : la charge est en réalité délocalisée sur plusieurs atomes du cycle aromatique.

Au cours de la seconde ( Seconde est le féminin de l'adjectif second, qui vient immédiatement après le premier ou qui s'ajoute à quelque chose de nature identique. La seconde est une unité de mesure du temps. La seconde d'arc est une...) étape, un atome (Un atome (du grec ατομος, atomos, « que l'on ne peut diviser ») est la plus petite partie d'un corps simple pouvant se combiner chimiquement avec une autre. Il est généralement constitué...) d'hydrogène (L'hydrogène est un élément chimique de symbole H et de numéro atomique 1.) lié au cycle ayant subi l'addition électrophile part en tant qu'ion H+. L'électron (L'électron est une particule élémentaire de la famille des leptons, et possèdant une charge électrique élémentaire de signe négatif. C'est un des composants de l'atome.) qui était utilisé pour la liaison C-H permet alors au système de retrouver son aromaticité.

Autres substitutions

Réaction de Kolbe-Schmitt

La réaction de Kolbe-Schmitt (ou procédé de Kolbe) est une réaction de carboxylation mise au point (Graphie) par A. Kolbe et R. Schmitt. Au cours de cette substitution électrophile aromatique, du phénolate de sodium (Le sodium est un élément chimique, de symbole Na et de numéro atomique 11. C'est un métal mou et argenté, qui appartient aux...) (sel de phénol) est chauffé à 125 °C en présence de dioxyde de carbone (Le dioxyde de carbone, communément appelé gaz carbonique ou anhydride carbonique, est un composé chimique composé d'un atome de carbone et de deux...) sous une pression (La pression est une notion physique fondamentale. On peut la voir comme une force rapportée à la surface sur laquelle elle s'applique.) de 100 atm, puis traité par de l'acide sulfurique (L'acide sulfurique (anciennement appelé huile de vitriol ou vitriol) est un composé chimique corrosif de formule H2SO4.). Le bilan de la réaction est le suivant :

C6H5OH + NaOH + H2SO4 → C6H4OHCOOH + HSO4-
Mécanisme de la synthèse de Kolbe-Schmitt

Au cours de la première étape (pas montrée sur le schéma), le phénol réagit avec de la soude pour former le phénolate de sodium et des ions OH-. Le phénolate réagit ensuite avec le dioxyde de carbone (Le carbone est un élément chimique de la famille des cristallogènes, de symbole C, de numéro atomique 6 et de masse atomique 12,0107.) par substitution électrophile aromatique, le centre électrophile étant ici l'atome (Un atome (grec ancien ἄτομος [atomos], « que l'on ne peut diviser ») est la plus petite partie d'un corps simple pouvant se...) de carbone du CO2. Les ions OH- formés au cours de la première étape assistent la restauration de l'aromaticité. Le composé obtenu étant la base conjuguée de l'acide (Un acide est un composé chimique généralement défini par ses réactions avec un autre type de composé chimique complémentaire, les bases.) carboxylique, la dernière étape consiste en une réaction acide-base avec l'acide sulfurique.

Le produit obtenu au cours de cette réaction est un hydroxy-acide aromatique (ici l'acide salicylique (L'acide salicylique est un acide carboxylique incolore et cristallin utilisé comme médicament. (salicylique est l'adjectif de salicyline).), précurseur de l'aspirine).

Principales substitutions électrophiles aromatiques

Ce chapitre détaille les principales substitutions électrophiles aromatiques utilisées dans l'industrie et en laboratoire. Pour chacune d'entre elles, le mécanisme de la réaction est donné dans le cas particulier du benzène (Le benzène est un hydrocarbure aromatique monocyclique, de formule C6H6, également noté Ph-H, φ-H ou encore Ar-H. Ce composé organique incolore (il a d'ailleurs le même indice de...). Ce mécanisme est similaire pour d'autres types de composés aromatiques, aux conditions opératoires (température, solvant...) près.

Nitration aromatique

La nitration aromatique est une substitution électrophile aromatique particulière au cours de laquelle un atome d'hydrogène lié à un atome de carbone du cycle aromatique est substitué par un groupement nitro -NO2 pour former du nitrobenzène (Le nitrobenzène, de formule chimique C6H5NO2, est un composé organique aromatique connu également sous le nom de Nitrobenzol, Nitrophène ou...). L'électrophile utilisé pour la substitution est NO2+ (ion nitronium), produit in-situ.

Dans la pratique pour effectuer la substitution, le benzène est chauffé à 50 °C environ dans un mélange (Un mélange est une association de deux ou plusieurs substances solides, liquides ou gazeuses qui n'interagissent pas chimiquement. Le résultat de...) d'acide sulfurique et d'acide nitrique (L’acide nitrique, parfois appelé acide azotique, est un composé chimique liquide très corrosif de formule chimique HNO3. C’est un acide...). Le schéma réactionnel est le suivant :

(1) 2H2SO4 + HNO3 → 2HSO4- + NO2+ + H3O+
(2) C6H6 + NO2+ → C6H5NO2 + H+
(3) H+ + H3O+ + 2HSO4- → H3O+ + H2SO4 + HSO4-

L'acide sulfurique joue (La joue est la partie du visage qui recouvre la cavité buccale, fermée par les mâchoires. On appelle aussi joue le muscle qui sert...) en quelque sorte le rôle de catalyseur (En chimie, un catalyseur est une substance qui augmente la vitesse d'une réaction chimique ; il participe à la réaction mais il ne fait partie ni des produits, ni...) pour la formation de l'ion nitronium. La réaction est également possible avec l'acide nitrique seul, mais elle est alors beaucoup plus lente (La Lente est une rivière de la Toscane.). Parmi les autres réactifs utilisables pour la nitration aromatique, on peut citer le tétrafluoroborate de nitronium, qui est un sel de nitronium obtenu à partir de fluorure d'hydrogène, d'acide nitrique et de trifluorure de bore (Le bore est un élément chimique de symbole B et de numéro atomique 5.).

Mécanisme de formation de l'ion nitronium
Mécanisme de la nitration aromatique

Si la réaction est catalysée en présence d'acide sulfurique, l'étape cinétiquement déterminante est la nitration du cycle benzénique pour former l'intermédiaire de Wheland. En présence d'acide nitrique seul, il s'agit de la formation de l'ion nitronium.

Le nitrobenzène formé au cours de cette réaction peut notamment être utilisé pour fabriquer de l'aniline (L'aniline, connue également comme phénylamine ou aminobenzène, est un composé organique aromatique de formule chimique C6H5NH2. C'est une amine primaire...) par réduction :

C6H5NO2 + 3H2 → C6H5NH2

Sulfonation aromatique

Mécanisme de formation de SO3 dans l'acide sulfurique

La sulfonation aromatique est une substitution électrophile aromatique particulière au cours de laquelle un atome d'hydrogène lié à un atome de carbone du cycle aromatique est substitué par un groupement acide sulfonique. Dans le cas du benzène, la réaction permet de former de l'acide benzènesulfonique.

La substitution peut être réalisée de deux manières :

  • Le benzène est maintenu à 25 °C dans un oléum, solution de SO3 dans l'acide sulfurique (H2SO4) ou mélange de SO3 et d'eau (L’eau est un composé chimique ubiquitaire sur la Terre, essentiel pour tous les organismes vivants connus.) (avec SO3 majoritaire). Le bilan de la réaction est alors :
C6H6 + SO3 → C6H5SO3H
  • Le benzène est chauffé dans l'acide sulfurique concentré. SO3 est alors formé in-situ par réaction de l'acide sulfurique sur lui-même. Le bilan de la réaction est alors :
C6H6 + 2 H2SO4 → C6H5SO3H

Dans les deux cas, le mécanisme de la réaction est le suivant :

Mécanisme de la sulfonation électrophile aromatique

Pour la sulfonation, l'élimination de l'atome d'hydrogène se fait par une réaction intramoléculaire.

Cette réaction ne possède pas d'étape cinétiquement déterminante.

Il s'agit d'une réaction réversible : il est possible d'éliminer le groupement acide sulfonique et de régénérer le benzène en chauffant l'acide benzènesulfonique dans une solution diluée d'acide sulfurique dans de l'eau surchauffée. Le bilan est alors :

C6H5SO3H + H2O(vapeur) → C6H6 + HSO4- + H3O+

L'acide benzènesulfonique formé au cours de cette réaction est un intermédiaire de synthèse important dans l'industrie, utilisé dans la fabrication de colorants et de produits pharmaceutiques. Par ailleurs, il est possible de le réduire en présence de soude fondue pour former du phénol.

Halogénation aromatique

L’halogénation aromatique est une substitution électrophile aromatique au cours de laquelle un atome d'hydrogène lié à un atome de carbone du cycle aromatique est substitué par un élément halogène (Les halogènes sont une série chimique constituée des éléments chimiques du groupe 17 du tableau périodique aussi...) suivant le bilan suivant :

C6H6 + X2 → C6H5X + HX

La réaction n'est pas spontanée, mais nécessite la présence d'un catalyseur (En chimie, un catalyseur est une substance qui augmente la vitesse d'une réaction chimique ; il participe à la réaction mais il ne fait partie ni des produits, ni des réactifs et n'apparaît donc pas dans...) de type acide de Lewis. Elle s'effectue donc en milieu anhydre. Elle est possible sans catalyseur (mais est alors lente) dans le cas de cycles activés, comme par exemple le phénol. L'halogénation aromatique permet de substituer un atome d'hydrogène par un atome de chlore (Le chlore est un élément chimique de la famille des halogènes, de symbole Cl, et de numéro atomique 17.), de brome (Le brome est un élément chimique de la famille des halogènes, de symbole Br et de numéro atomique 35. Les autres halogènes sont le fluor, le chlore, l'iode et...) ou d'iode (L'iode est un élément chimique de la famille des halogènes, de symbole I et de numéro atomique 53.). En revanche, elle n'est pas possible avec le fluor (Le fluor est un élément chimique de symbole F et de numéro atomique 9. Il s'agit du premier élément de la famille des halogènes, de masse atomique 19.). Celui-ci est en effet un oxydant puissant qui entraîne une dégradation du composé aromatique. Le mécanisme de la réaction est le suivant (exemple dans le cas d'une chloration) :

Mécanisme de l'halogénation aromatique (exemple de la chloration)

Au cours de la première étape du mécanisme, l'acide de Lewis utilisé comme catalyseur forme un complexe avec le dichlore (Le dichlore (Cl2) est un gaz jaune-vert dans les conditions normales de pression et de température (chloros signifie « vert » en grec). Il est 2,5 fois plus...), ce qui rend la liaison Cl-Cl polarisée. L'un des deux atomes de chlore devient donc électrophile, et peut subir l'attaque nucléophile du cycle aromatique, conduisant ainsi à la formation de l'intermédiaire de Wheland. L'anion formé contribue ensuite dans la deuxième étape à l'élimination de l'atome d'hydrogène et à la restauration de l'aromaticité.

Le catalyseur utilisé est généralement constitué du même élément halogène que celui agissant dans la substitution. Les acides de Lewis les plus couramment employées sont donc ZnCl2, AlCl3 et FeCl3 dans le cas de la chloration, et FeBr3 dans le cas de la bromation. Dans le cas de l'iode, le mécanisme de la réaction est légèrement différent. En effet, le diiode I2 est trop peu réactif. Il doit d'abord réagir avec un agent d'oxydation (par exemple l'acide nitrique) pour former l'ion I+, électrophile, qui interviendra dans l'iodation.

Les halogènes sont des éléments faiblement désactivant pour le cycle aromatique. En conséquence, si la réaction est catalysée et que l'halogène est présent en excès, il pourra se produire des polysubstitutions.

Réactions de Friedel-Crafts

Les réactions de Friedel-Crafts sont des substitutions électrophiles aromatiques particulières au cours desquelles un cycle aromatique est alkylé (substitution d'un atome d'hydrogène par un groupement alkyle) ou acylé (substitution d'un atome d'hydrogène par un groupement acyle).

Article détaillé : Réaction de Friedel-Crafts.

Alkylation

L'alkylation de Friedel-Crafts est une réaction d'alkylation d'un composé aromatique. Cette réaction nécessite une catalyse par un acide de Lewis.

Bilan de l'alkylation de Friedel-Crafts

Acylation

L'acylation de Friedel-Crafts est une réaction d'acylation d'un composé aromatique. Comme l'alkylation, elle nécessite une catalyse par un acide de Lewis. Les principaux catalyseurs utilisés sont le chlorure d'aluminium (L'aluminium est un élément chimique, de symbole Al et de numéro atomique 13. C’est un élément important sur la Terre avec 1,5 % de la masse totale.) et le bromure d'aluminium. Il y a en général plus besoin (Les besoins se situent au niveau de l'interaction entre l'individu et l'environnement. Il est souvent fait un classement des besoins humains en trois grandes catégories : les besoins primaires, les...) de catalyseur que les quantités stoechiométriques, car il complexe avec le produit formé, d'où la nécessité d'une hydrolyse après la réaction pour détruire le complexe.

Page générée en 0.021 seconde(s) - site hébergé chez Amen
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
Ce site est édité par Techno-Science.net - A propos - Informations légales
Partenaire: HD-Numérique