En mathématiques, et plus précisément en géométrie, une 3-sphère est l'analogue d'une sphère en dimension supérieure. C'est l'ensemble des points équidistants d'un point central fixé dans un espace euclidien à 4 dimensions. Tout comme une sphère ordinaire (ou 2-sphère) est une surface bidimensionnelle formant la frontière d'une boule en trois dimensions, une 3-sphère est un objet à trois dimensions formant la frontière d'une boule à quatre dimensions. Une 3-sphère est une exemple de variété (différentielle) de dimension 3. Les 3-sphères sont aussi fréquemment appelées des hypersphères, mais ce terme peut en général être utilisé pour décrire n'importe quelle n-sphère pour n ≥ 3.
En coordonnées cartésiennes, une 3-sphère de centre (C0, C1, C2, C3) et de rayon r est l'ensemble de tous les points (x0, x1, x2, x3) de l'espace (à 4 dimensions) réel R4 tels que :
La 3-sphère centrée à l'origine et de rayon 1 s'appelle la 3-sphère unité, et est généralement notée S3:
Il est souvent commode d'identifier R4 avec l'espace à deux dimensions complexes (C2), ou avec l'ensemble des quaternions (H). La 3-sphère unité est alors donnée par : ou : Cette dernière description est souvent la plus utile : tout comme le cercle unité du plan complexe est important dans l'étude des coordonnées polaires, la 3-sphère joue un rôle dans la représentation polaire utilisée pour le produit des quaternions (voir forme polaire des quaternions pour plus de détails).
Deux constructions topologiques commodes sont les inverses de « couper en deux » et de « percer »
La 3-sphère peut être topologiquement construite en « collant entre elles » les frontières de deux boules de R3 (ces frontières sont des 2-sphères). On peut mieux se représenter le processus en visualisant la quatrième dimension comme une température, qu'on fixe à zéro sur les deux 2-sphères à identifier, et qui serait par exemple négative dans la première boule (en décroissant jusqu'à son centre) et positive dans la seconde. Cette construction est analogue à celle de la sphère ordinaire obtenue en recollant deux disques par leurs frontières (les cercles qui les bornent), ces disques devenant deux hémisphères.
Imaginant la 2-sphère comme un ballon, on voit qu'en la perçant et en l'aplatissant, le point manquant devient un cercle (une 1-sphère) et la surface du ballon le disque (une 2-boule) intérieur à ce cercle. De même, une 3-boule est le résultat de ce processus appliqué à la 3-sphère. Pour reconstruire la 3-sphère, on part donc d'une 3-boule, et on identifie tous les points de sa frontière (une 2-sphère) en un seul. Une autre façon de voir ces opérations est la projection stéréographique : posant le pôle Sud de la 2-sphère sur un plan, on associe à chaque point de la sphère (autre que le pôle Nord) l'intersection avec ce plan de la droite joignant le pôle Nord au point. L'analogue en 3 dimensions est une bijection de la 3-sphère privée d'un point avec l'espace (tridimensionnel) tout entier ; on démontre de plus que cette application envoie les 2-sphères et les plans de l'espace sur les 2-sphères de la 3-sphère (les plans étant envoyés sur celles passant par le centre de projection). Une façon plus imagée de réaliser la correspondance dans le premier cas est d'imaginer le mouvement de billes sur la sphère lancée du pôle Sud avec une vitesse initiale arbitraire ; si on représente alors le point où la bille arrive au bout d'un temps déterminé en coordonnées polaires (le rayon représentant la valeur de la vitesse initiale, et l'angle la direction de cette vitesse), le pôle Nord est représenté par un cercle et les autres points par le disque intérieur à ce cercle ; la même idée sur la 3-sphère amène à une correspondance avec une 3-boule. Si l'on considère la 3-sphère comme un groupe de Lie, les trajectoires des billes en sont des sous-groupes à un paramètre, la 3-boule est (un voisinage de) l'espace tangent à l'identité (identifiée avec le pôle Sud) et l'application vers la 3-sphère est l'application exponentielle.