Les espaces vectoriels forment le support et le fondement de l'algèbre linéaire. Ils sont aussi présents dans de nombreux domaines distincts. S'il n'est pas possible d'indiquer ici tous les cas d'utilisation, on peut tout de même citer pour les principales structures objet de théories, des exemples significatifs. Leurs rôles dans de vastes théories ne traitant pas d'une structure particulière, comme celles des nombres algébriques ou de Galois peuvent aussi être évoqués.
Les espaces vectoriels utilisés sont d'une grande diversité. On y trouve les classiques espaces vectoriels de dimension deux et trois sur les nombres réels, cependant la dimension peut être quelconque, même infini. Les nombres complexes sont aussi très utilisés, ainsi que les rationnels. Il n'est pas rare qu'une partie des nombres réels ou complexes soit considéré comme un espace vectoriel rationnel. Le corps de base peut aussi contenir un nombre fini d'éléments, définissant parfois un espace vectoriel dont le cardinal est fini.
Les propriétés géométriques de la structure permettent la démonstration de nombreux théorèmes. Elles ne se limitent pas aux cas où l'espace est réel, même dans le cas de corps plus insolites comme les corps finis ou les extensions finies des rationnels, les propriétés géométriques s'avèrent parfois essentielles.
La classification des groupes finis est une vaste question, encore objet de recherche. Si le groupe contient un petit nombre d'éléments, les théorèmes de Sylow peuvent suffire pour en déterminer la structure. Une méthode beaucoup plus puissante est nécessaire dans le cas général.
Georg Frobenius , à la suite de travaux de Richard Dedekind développe une nouvelle théorie en 1896. Elle se fonde sur l'idée que l'ensemble des symétries d'un espace vectoriel possède une structure de groupe. Il est toujours possible de représenter un groupe fini par des symétries bien choisies sur un espace vectoriel de dimension suffisante. Un groupe est ainsi incarné par des transformations géométriques simples. Une telle incarnation prend le nom de représentation d'un groupe.
Les espaces vectoriels choisis sont de dimension finie, en général sur le corps des complexes, cependant pour disposer de bonnes propriétés arithmétiques le corps peut être celui des rationnels ou encore utiliser des entiers algébriques comme pour la démonstration du théorème de William Burnside sur les groupes résolubles. Richard Brauer étudie un cas très abstrait, celui des représentations sur un espace vectoriel construit à l'aide d'un corps fini.
Un exemple relativement simple d'utilisation de cette théorie est donné par Burnside , avec son théorème sur les groupes de type fini et d'exposant fini.
Un exemple célèbre d'anneau disposant aussi d'une structure d'espace vectoriel est celui des polynômes à coefficients dans un corps. Cet espace vectoriel, de dimension infinie, est largement utilisé en algèbre linéaire, à travers par exemple le polynôme minimal ou caractéristique. Le morphisme canonique entre les polynômes et les applications linéaires d'un espace vectoriel est à l'origine d'une structure d'algèbre qui est un anneau, si la multiplication externe est oubliée.
Cette méthode permet d'élucider la structure de certains anneaux. Si la caractéristique d'un anneau est soit nulle soit égale à un nombre premier, alors l'anneau est aussi un espace vectoriel sur tout sous-anneau disposant d'une structure de corps. C'est par exemple le cas du plus petit sous-anneau contenant l'unité. L'espace vectoriel ressemble à la structure développée par Grassman. Cette remarque est utilisée au début du XXe siècle, en particulier par Emil Artin et Emmy Noether pour élucider cette structure dans le cas des anneaux artiniens et noethériens, qui sont des copies de sous-algèbres sur un espace vectoriel construit sur sous-anneau qui s'avère être un corps.
Un exemple est la généralisation du théorème de Joseph Wedderburn par Artin et portant maintenant le nom d'Artin-Wedderburn. Il est important en algèbre non commutative. Ce théorème permet, par exemple, de construire le corps des quaternions à l'aide d'une représentation du groupe associé sur un espace vectoriel réel de dimension quatre.
La théorie de Galois contient de nombreux exemples d'espaces vectoriels. Elle consiste à étudier un corps comme un espace vectoriel sur un sous-corps. Ainsi chaque sous-corps permet de considérer la structure initiale comme un espace vectoriel particulier.
Un exemple d'application est celui des figures constructible à la règle et au compas. Ces points forment un corps disposant d'une structure d'espace vectoriel sur les nombres rationnels. Il est de dimension infinie et, pour chaque points, le plus petit sous-corps le contenant est de dimension finie égale à une puissance de deux. Un tel sous-corps est appelé une tour d'extension quadratique. Cette propriété de ces espaces vectoriel permet de résoudre d'antiques conjectures comme la duplication du cube, la trisection de l'angle ou la construction d'un polygone régulier.
L'exemple historique de la théorie est celui de la résolution d'une équation polynomiale. Le théorème d'Abel donne une condition nécessaire et suffisante de résolution par radicaux. Les espaces vectoriels utilisés ont pour éléments ceux du plus petit corps L contenant tous les coefficients du polynôme ainsi que ses racines et le corps sous-jacent est un sous-corps K du premier contenant tous les coefficients. Le groupe de Galois est composé des automorphismes du corps L et laissant invariant le corps K. Il correspond à un nombre fini de symétries de l'espace vectoriel. L'élément clé de la démonstration montre que l'équation est résoluble seulement si ces symétries sont diagonalisables.