L'algèbre des termes de signature Ω sur un ensemble est une algèbre qui va permettre de définir la notion d'identité dans une algèbre, par exemple l'associativité, la commutativité et la distributivité. Intuitivement, elle est formée de toutes les combinaisons formelles d'éléments de cet ensemble à partir d'éléments de Ω, interprétés comme des opérateurs. On peut penser à cette algèbre comme une sorte d'algèbre de polynômes en des indéterminées (en nombre fini ou infini).
Définition. Soit I un ensemble. Il existe un plus petit ensemble T tel que I et Ω0 sont inclus dans T (on suppose ces deux ensembles disjoints) et tel que, pour tout entier naturel non nul n, pour tout élément ω de Ωn et quels que soient les n éléments x1, ..., xn de T, la suite (ω,x1, ..., xn) appartient à T. Il existe alors une unique structure algébrique de signature Ω sur T telle que Ω0 est l'ensemble des constantes de T et telle que, pour tout entier naturel non nul n, pour tout élément ω de Ωn et quels que soient les n éléments x1, ..., xn de T, ωT(x1, ..., xn) = (ω,x1, ..., xn), ce qui permet de désigner par ω(x1, ..., xn) l'élément (ω,x1, ..., xn) de T. On appelle algèbre des termes de signature Ω construite sur I et on note TΩ(I) ou T(I) l'algèbre ainsi obtenue. On l'appelle aussi algèbres des mots ou algèbre absolument libre. On appelle termes ou mots les éléments de T.
L'élément i de T est noté Xi et les Xi sont appelées indéterminées de T.
Ainsi, les termes sont expressions formelles en faisant opérer les éléments de Ω sur les indéterminées (les Xi, éléments de I) et les constantes (les éléments de Ω0), et en faisant opérer les éléments de Ω sur les expressions ainsi obtenues et réitérant le précédé, un nombre fini de fois.
Théorème. L'algèbre T = TΩ(I) a une propriété universelle : pour toute algèbre A et pour toute application f de l'ensemble I dans A, il existe un unique homomorphisme d'algèbres de T dans A qui prolonge f, et on obtient ainsi une bijection entre l'ensemble des applications de I dans A et l'ensemble des homomorphismes de T sur dans A.
Soit A une algèbre. En identifiant l'ensemble des applications de I dans A à l'ensemble des familles d'éléments de A indexées par I, on a, d'après ce qui précède, une bijection canonique φ entre l'ensemble des familles d'éléments de A indexées par I et l'ensemble des homomorphismes de T dans A. Pour toute famille
Pour toute algèbre A, il existe un homomorphisme surjectif à valeurs dans A définie sur l'algèbre des termes construits sur A.
Définition. On appelle identité de signature Ω construite sur X tout couple d'éléments de T = TΩ(X). Étant donné un identité (u, v), on dit qu'une algèbre A satisfait l'identité u = v si, pour toute famille x =
Exemples. On considère un magma M, c'est-à-dire un ensemble muni d'une seule loi de composition.
Exemples. Voici quelques exemples d'identités :
Définition. Une variété d'algèbres de signature Ω est une classe V d'algèbres de signature Ω telle qu'il existe un ensemble I et une partie S de TΩ(I)× TΩ(I) telle que V est la classe de toutes les algèbres de signature Ω qui satisfont chacune des identités de S. En fait, on pourrait, pour définir les variétés d'algèbres en général, se limiter à considérer l'algèbre des termes d'un ensemble infini dénombrable fixé une fois pour toute (l'ensemble des entiers naturels, par exemple).
Par exemple, les monoïdes, les groupes, les anneaux, les modules sur un anneau donné (ou espaces vectoriels sur un corps donné) forment des variétés d'algèbres.
Les variétés d'algèbres de signature donnée forment des catégories pour les homomorphismes et la composition des homomorphismes, et ces catégories ont la plupart des propriétés communes usuelles des catégories des groupes, des monoïdes, des anneaux, des espaces vectoriels sur un corps, etc. : construction des structures induites et des quotients, existence et construction des produits, existence d'objets libres, existence des limites et des colimites quelconques, construction des limites quelconques et des colimites filtrantes. En un sens, on peut dire que les variétés d'algèbres sont de « bonnes » catégories d'algèbres.
La classe de toutes les algèbres qui sont vides ou triviales forment une variété d'algèbres.
Certaines opérations de structures algébriques qui font que l'on a à faire à une variété d'algèbres ne sont pas données dans la définition usuelle. Par exemple, un groupe un ensemble muni d'une loi de composition vérifiant certaines propriétés, mais seules l'existence de l'élément neutre et l'existence de l'inverse de tout élément font partie de la définition usuelle, mais le groupe n'est pas, dans la définition usuelle, muni d'un élément neutre et d'une inversion. Pour déterminer les opérations qui dont que l'on a à faire à une variété d'algèbres, on peut examiner les axiomes des sous-structures (sous-groupes, sous-anneaux, etc.).
Soit V une variété d'algèbres. On a un foncteur, dit d' oubli, de la catégorie V dans la catégorie des ensembles en associant à toute algèbre A de V son ensemble sous-jacent.
On trouvera ici la liste des principales variétés d'algèbres que l'on rencontre en mathématiques. Pour chacune des types de structure algébrique suivantes, la classe de toutes les algèbres qui sont de ce type forment une variété d'algèbres :
Voici des structures algébriques qui ne forment pas des variétés d'algèbres : les semi-groupes, c'est-à-dire les monoïdes dont tout élément est simplifiable, les corps, les anneaux principaux, les anneaux factoriels, les modules libres sur un anneau donné non trivial A qui n'est pas un corps, les treillis complets.
Soit K un corps (commutatif ou non). Soit X un espace affine sur un corps K, en considérant l'ensemble vide comme un espace affine attaché à un espace vectoriel nul. Alors, pour tout entier naturel non nul n et pour toute suite finie de n éléments de K dont la somme est égale à 1, on a opération n-aire qui à une suite de n-points associe le barycentre de ces points affecté de ces éléments de K. On définit donc une structure algébrique sur X. En fait, on peut montrer, que, en associant à chaque espace affine sur K l'algèbre ainsi définie, on a un foncteur de la catégorie des espaces affines sur K (les morphismes sont les applications affines) dans une variété d'algèbres qui est en fait une équivalence de catégories. Ceci montre que les propriétés catégorielles des variétés d'algèbres s'appliquent à la catégorie des espaces affine sur K.
Les variétés d'algèbres sont stables pour la plupart des constructions usuelles en algèbre. Soit V une variété d'algèbres. On a les propriétés suivantes.
En fait, on a la caractérisation suivante des variétés d'algèbres.
Théorème de Birkhoff. Pour qu'une classe V d'algèbres de signature Ω soit une variété d'algèbres, il faut et il suffit qu'elle vérifie les propriétés suivantes :
Proposition. Soit V une variété d'algèbres. Alors, au sens de la théorie des catégories, les isomorphismes de la catégorie V ne sont autres que les homomorphismes de V qui sont des bijections et les monomorphismes de V ne sont autres que les homomorphismes de V qui sont des injections. Tout homomorphisme surjectif de V est un épimorphisme de la catégorie V, mais la réciproque peut être fausse, comme le montre la catégorie des anneaux (ou des monoïdes) : on peut montrer qu'il existe, dans la catégorie des anneaux, l'injection canonique de l'anneau Z des entiers rationnels dans le corps Q des nombres rationnels est un épimorphisme.
Dans les variétés d'algèbres, certains auteurs appellent épimorphismes les homomorphismes surjectifs, ce qui peut créer une confusion avec les épimorphisme de la théorie des catégories.
Proposition. Le produits directs d'algèbres de V ne sont autres que les produits au sens de la théorie des catégories.
Toutes les propriétés générales des variétés d'algèbres s'appliquent à toutes les structures algébriques qui forment des variétés d'algèbres énumérées précédemment, et à bien d'autres. On peut donc définir pour ses structures des homomorphismes, des sous-algèbres et les congruences, et on peut construites les produits directs et les quotients, et ce, de manière uniforme. De plus, comme on le verra, on peut construire les limites quelconques et les colimites filtrantes de foncteurs (en particulier des limites projectives et inductives de systèmes projectifs et systèmes inductif indexés par des ensembles ordonnés filtrants) de la même manière qu'en théorie des ensembles. En particulier on a des égalisateurs, des coégalisateurs et des produits fibrés, construits comme en théorie des ensembles. On peut aussi montrer que ces structures admettent des colimites quelconques, et en particulier des coproduits (ou sommes) et des coproduits fibrés (ou sommes amalgamées ou fibrées), mais chaque variété d'algèbres à sa construction, qui peut différer de la construction que l'on retrouve en théorie des ensembles. On peut construire les algèbres libres engendrées par des ensembles.