Écriture décimale positionnelle - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

Numérations selon les cultures
Numération arabo-indienne
arabe
khmer
indienne
mongole
thaï
Numérations à l’origine chinoise
chinoise
japonaise
à bâtons
suzhou
Numérations alphabétiques
arménienne
cyrillique
d'Âryabhata
éthiopienne
hébraïque
grecque
gotique
tchouvache
Autres systèmes :
attique
brahmi
champs d'urnes
égyptienne
étrusque
forestière
inuite
maya
mésopotamienne
romaine
Notations positionnelles par base
Décimal (10)
2, 4, 8, 16, 32, 64
1, 3, 6, 9, 12, 20, 24, 30, 36, 60, plus…
v · d · m

L'écriture décimale positionnelle d'un nombre est sa représentation dans un système de numération de base 10 employant une notation positionnelle. On appelle parfois aussi une notation répondant à cette définition « système de numération indo-arabe », car ce système s'est développé en Inde et parvenu en Europe par l'intermédiaire des Arabes. Les symboles (ou glyphes) utilisés peuvent être divers. Cependant, la plupart sont des chiffres d'origine brahmi, dont les plus répandus sont les chiffres européens. Avec dix chiffres de 0 à 9, cette écriture correspond au développement décimal.

Notations

Sous une forme élaborée, l'écriture décimale positionnelle pourrait utiliser :

  •  dix chiffres (représentant les entiers de zéro à neuf),
  •  des symboles positif et négatif pour les nombres signés (exemple : -6),
  •  un marqueur décimal entre les unités et la partie fractionnaire du nombre (exemple : 12,5),

Une telle écriture permettrait ainsi de représenter :

  •  les entiers naturels à l'aide de 10 symboles seulement, les dix chiffres ;
  •  les nombres rationnels égaux au quotient d'un entier par une puissance de 10 à l'aide de 12 symboles (les dix chiffres, un signe pour les nombres négatifs, un marqueur décimal.

S'agissant des autres nombres rationnels, on peut envisager par exemple d'utiliser des chiffres surlignés pour la partie décimale qui se répète à l'infini. Exemples :

  •  1,309 = 1,3090909… = 1,3 + 9/990 
  •  3,142857142857… = 3,142857 = 3 + 142 857/999 999. Mais on sort alors du cadre strict de la numération de position.

Enfin, l'utilisation d'un séparateur entre groupes de trois chiffres dans la partie entière d'un nombre (en France une espace, comme par exemple dans 1 000 000) traduit le caractère hybride de notre système de numération, lequel n'est pas purement à base dix, mais combine en réalité les bases 10 et 1000.

Historique

En Chine

En Chine, les plus anciennes traces du système de numération remontent à la propagation de l'écriture, vers 1350 av. J.-C. Il s'agit d'un système décimal de type hybride, disposant de neuf chiffres pour les unités, se combinant avec les symboles représentant dix, cent, mille et dix-mille. Entre le VIIIe et le IVe siècle av. J.-C., apparait un autre système de représentation des nombres, positionnel, à l'aide de baguettes, ces dernières étant disposées verticalement pour les positions impaires, horizontalement pour les positions paires, et le zéro étant figuré par un espace. À partir du début du IIe siècle av. J.-C., les baguettes deviennent un instrument de calcul. Ce système de notation se généralise alors, et reste employé jusqu'au début du XXe siècle, bien que le boulier supplante les baguettes à calculer entre le XIIIe et le XIVe siècle.

En Inde

En Inde, l'écriture brahmi apparait au IIIe siècle av. J.-C., mais, à cette époque, les chiffres sont utilisés au sein d'un système employant une notation additive. En 458, dans un traité de cosmologie jaïna, en sanskrit, le Lokavibhaga (Les Parties de l'univers), les nombres sont écrits selon le principe positionnel, bien que les chiffres soient écrits en toutes lettres, le mot « sunya » (signifiant « vide ») indiquant une absence de valeur. La plus ancienne apparition d'une utilisation positionnelle des chiffres indiens, de un à neuf, date de 595. Cet usage se retrouve en plusieurs endroits du sous-continent au VIIe siècle, et se généralise à partir du IXe siècle. En 628, Brahmagupta décrit le « sunya » comme un nombre dans son ouvrage en sanskrit Brahmasphutasiddhanta (L'Ouverture du monde). L'usage à cette époque d'une notation positionnelle décimale en Inde, employant des chiffres de un à neuf, est rapportée par Sévère Sebôkht, un évêque syriaque, en 662.

Le symbole zéro

Les premiers symboles en lien avec une écriture décimale correspondant au zéro positionnel, en forme de rond ou de point, remplaçant l'espace qui précédait, ont été trouvés dans l'actuel Cambodge en 683 et à Sumatra la même année et en 684. Ces régions sont, à l'époque, sous influence chinoise, et la première bénéficie alors de nombreux échanges avec l'Inde. En Inde, la première inscription comportant distinctement ce zéro date de 876. En Chine, le plus ancien texte imprimé faisant intervenir le zéro positionnel avec le système de notation des baguettes est le Su Chu Jin Chang, de 1247, mais une allusion à l'usage d'un point apparait dans le Kai Yuan Chan Jing, paru entre 718 et 729.

Adoption par les Arabes

Afin de favoriser l'essor des sciences, les Arabes développent un mécénat scientifique à partir de la deuxième moitié du VIIIe siècle, ils invitent des savants étrangers, construisent des bibliothèques, traduisent des textes anciens, généralement à partir du syriaque ou du pehlévi (moyen-persan). Une numération alphabétique, additive, est alors d'usage, comme chez la plupart des peuples dont l'alphabet dérive du phénicien.

Avec la visite d'un astronome indien à la cour du calife Al-Mansour, à Bagdad, ce dernier réalise l'importance des sciences indiennes. Il charge alors Al-Fazari, en 772, de traduire en arabe des tables astronomiques indiennes. Vers cette période sont traduits Aryabhata et Brahmagupta. Vers 820, le calife Al-Mam'un fonde à Bagdad la « Maison de la Sagesse », afin de permettre aux savants de travailler autour d'une grande bibliothèque, libérés des contraintes matérielles. Dans ce contexte, au début du IXe siècle, Al-Khwarizmi décrit les notations indiennes dans un ouvrage disparu, nommé aujourd'hui Kit ab al-jam'wal tafriq bi hisab al-Hind (Livre sur l'addition et la soustraction d'après la méthode des Indiens), mais s'il fait usage du zéro positionnel, il ne considère pas le zéro comme un nombre. Dans son ouvrage Kit ab al-fusul fi-l-hisab al-Hindi (Livre sur les chapitres de l'arithmétique indienne), écrit au milieu du Xe siècle à Damas, Abu l-Hasan al-Uqlidisi vante les mérites du nouveau système de numération.

Adoption en Europe

Ce système, en Europe, s'est pendant longtemps confiné à la partie arabe de l'actuelle Espagne, la numération romaine étant en usage au-delà. Sa première apparition dans le monde chrétien, sans le zéro, se trouve dans un manuscrit, le Codex Vigilanus écrit en 976 dans un monastère du nord de l'Espagne, le couvent d'Albelda. Entre 967 et 969, Gerbert d'Aurillac découvre la science arabe dans les abbayes catalanes. Plus tard, grâce à ses correspondants, il obtient l'ouvrage De multiplicatione et divisione (Sur la multiplication et la division). Il propose alors, aux alentours de l'an mil, une simplification de l'abaque en adoptant des jetons comportant les chiffres arabes de un à neuf. Devenu pape en 999, il essaie d'introduire son outil de calcul, l'abaque de Gerbert, au sein de la chrétienté, mais son entreprise est mise à mal par l'opposition des clercs.

Vers la fin du XIe siècle, avec les territoires pris aux Arabes, les Chrétiens découvrent des manuscrits scientifiques. Ainsi Tolède, prise en 1085, devient, sous l'impulsion de l'évêque Raimond, le principal centre de traduction d'œuvres arabes en latin, et le Liber Algorismi de numero Indorum (Livre d'Al-Khwarizmi sur les chiffres indiens) y est traduit. En 1130, l'Anglais Adélard de Bath publie Algoritmi de numero indorum et une traduction d'Al-Khwarizmi. Le nouveau système ne tarde pas à être appelé « algorisme » (du nom latinisé d'Al-Khwarizmi, Algorizmi, et modifié plus tard en algorithme), ses partisans « algoristes », et ses opposants « abacistes » (partisans de l'abaque).

À partir de la fin du XIIe siècle, le commerce prend une dimension internationale, et l'Italie y occupe une place centrale. En 1202, Léonard de Pise, dit Fibonacci, ayant appris l'arabe et le calcul à Bougie (Béjaïa), en Algérie, publie le Liber Abaci (Livre de l'abaque), un traité de calcul et comptabilité (les professeurs de calcul sont alors appelés « maitres d'abaque ») largement diffusé, dans lequel il expose les chiffres arabes. Au cours du XIIIe siècle, les chiffres arabes commencent à s'enseigner dans les écoles de comptabilité en Italie. Cependant, avec la guerre de Cent Ans et l'épidémie de peste noire, qui se répand en Europe à partir de 1438, le commerce s'effondre.

Par la suite, l'économie reprend de plus belle, les banques et les assurances accompagnant l'activité commerciale. Les traités d'arithmétique à l'usage des marchands, s'inspirant du Liber abaci de Fibonacci, se multiplient en Italie, à partir du milieu du XIVe siècle. Vers 1480, avec l'imprimerie, développée par Gutenberg en 1434, des ouvrages de ce type sont publiés dans plusieurs villes d'Europe. Les derniers vétos ecclésiastiques concernant l'utilisation du nouveau système sont levés au XVe siècle, mais, jusqu'à la fin du siècle, le principe de la numération décimale de position nécessite d'être expliqué. Aux XVe et XVIe siècles, diverses notations, notamment pour les nombres décimaux, complètent le système. Celui-ci s'impose définitivement en France à la fin du XVIIIe siècle avec la Révolution. Enfin, en 1889, avec la définition axiomatique des entiers naturels, parue dans l'Arithmetices principia nova methodo exposita, de Giuseppe Peano, le zéro acquiert définitivement le statut de nombre.

Dans le monde

Sous l'influence de l'Europe, de nombreux pays adoptent le système de notation décimal positionnel, avec les chiffres européens. Les quelques écritures du sud de l'Inde qui n'en bénéficient pas l'adaptent à leurs chiffres au cours du XXe siècle, en prenant pour modèle les cultures dominantes du Nord de l’Inde ou d'autres pays.

Page générée en 0.249 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise