Le rayonnement de Hawking est le phénomène selon lequel un observateur regardant un trou noir peut détecter un infime rayonnement de corps noir émanant de la surface de celui-ci. Ce phénomène est aussi appelé, pour des raisons évidentes, évaporation des trous noirs. Il a été prédit par Stephen Hawking en 1975, et est considéré comme l'une de ses plus importantes réalisations.
La découverte théorique de ce phénomène a donné une justification à une branche de l'étude des trous noirs appelée thermodynamique des trous noirs, développée peu avant la découverte de Hawking, et qui suggérait qu'il devait être possible d'associer une température à un trou noir. Cependant, au niveau classique, il était démontré qu'un trou noir ne pouvait émettre de rayonnement (c'est même, en quelque sorte, la définition d'un trou noir). Ce paradoxe a été résolu par Stephen Hawking, qui a démontré que des effets d'origine quantique étaient à l'origine d'un tel phénomène.
Le rayonnement de Hawking s'avère extraordinairement faible pour les trous noirs issus de l'évolution stellaire et encore plus faible pour les autres trous noirs indirectement détectés dans l'univers (trous noirs intermédiaires et trous noirs supermassifs), aussi sa mise en évidence est-elle impossible à l'heure actuelle. Elle pourrait être rendue possible par l'existence de trous noirs de petite taille (microscopique). De tels objets pourraient avoir été produits lors du Big Bang (on parle de trous noirs primordiaux), voire être produits dans des accélérateurs de particules dans le cadre de certaines théories au-delà du modèle standard de la physique des particules.
Il existe un analogue cinématique au phénomène de rayonnement de Hawking, l'effet Unruh, du nom du physicien canadien William Unruh, qui l'a prédit en 1976. Celui-ci prédit qu'un observateur qui regarderait un miroir animé d'un mouvement accéléré aurait l'impression que celui-ci émet un rayonnement thermique, dont la température est proportionnelle à l'accélération du miroir. Dans un contexte un peu différent, l'effet Schwinger, qui décrit la création de particules chargées dans un champ électrique, peut être vu comme un analogue électrostatique du rayonnement de Hawking.
Divers processus issus de la mécanique classique sont à ne pas confondre avec l'effet Hawking, notamment ceux permettant d'extraire de l'énergie d'un trou noir : le processus de Penrose, ou son analogue ondulatoire, la superradiance. De même, les phénomènes d'éjection de matière par l'intermédiaire de jets issus d'un disque d'accrétion entourant le trou noir n'ont strictement rien à voir avec le phénomène d'évaporation des trous noirs.
La théorie quantique des champs (c'est-à-dire les lois de la mécanique quantique appliquée dans le cadre de la relativité restreinte) explique l'existence des fluctuations du vide : des paires particule-antiparticule sont en permanence générées par le vide. Des effets de ces fluctuations du vide peuvent être mis en évidence par divers phénomènes, comme l'effet Casimir en physique des particules, ou le déplacement de Lamb dans le spectre des niveaux d'énergie d'un électron dans un atome d'hydrogène.
De façon générale, ces paires de particules-antiparticules s'annihilent aussitôt, sauf si un phénomène physique permet de les séparer les unes des autres en un temps inférieur à la durée de vie typique de la paire. Dans le cas de l'effet Hawking, à l'horizon d'un trou noir, les forces de marée générées par le champ gravitationnel du trou noir sont si intenses qu'elles peuvent éloigner la particule de son antiparticule, avant qu'elles ne s'annihilent. L'une est absorbée par le trou noir, tandis que l'autre (la particule émise) s'en éloigne dans un sens opposé. De façon heuristique, l'énergie de la paire particule anti-particule, mesurée par un observateur situé loin du trou noir est négative, du fait que les deux particules sont piégées dans le puits de potentiel du trou noir. De façon schématique, il est possible que la répartition d'énergie au sein de la paire particule anti-particule donne à l'une des deux une énergie qui serait considérée comme positive par un observateur distant, c'est-à-dire lui permettant de s'échapper de son champ gravitationnel. Dans un tel cas, l'absorption de l'autre particule peut être vue comme l'absorption d'une particule d'énergie négative, produisant une diminution de sa masse. L'énergie des particules émises augmente avec la température du trou noir. En dessous d'une température limite, l'émission ne se fait qu'avec des particules de masse nulle comme les photons ou les gravitons et éventuellement les neutrinos. Au-dessus, l'émission de tous types de particules est possible, quoique ce régime ne concerne que la toute fin de l'évolution des trous noirs. Pendant le plus gros de leur existence, ceux-ci rayonnent des particules sans masse (voir ci-dessous).