Les Principia sont une œuvre tellement indigeste qu'il convient de s'atteler à en faire la critique : cela ne remet aucunement en question l'imagination et la puissance de travail de Newton. Récemment une relecture des méthodes nouvelles de la mécanique céleste de Henri Poincaré a été effectuée, sans remettre en cause Poincaré. En 2005, une relecture de la littérature de la relativité restreinte autour de 1905 n'a pas été inutile, quand elle a été libérée de toute passion.
Il s'agit simplement de démystifier l'œuvre : il n'est pas bon en science de louer une œuvre et de ne pas aider à la faire lire. Cet article pourrait s'intituler : pour lire les Principia.
La notation utilisera celle usuelle : traduction de Cohen: "variorum" ou plus simplement "var" ; traduction Cotes-Cajori : "principles" ou plus simplement "princ" ; traduction de la marquise du Châtelet : "cat".
Corollaire : le premier qui vient à l'esprit est de vérifier au moins le cas du cercle, de rayon r, de centre O, c’est-à-dire la formule de Huygens ( Horologium 1657).
On trouve aisément a(P) = 2 C² RQ/(aire)² = .
C'est initialement cette formule qui donne la troisième loi de Kepler pour une force en 1/r² [ et d'une manière générale pour une loi en 1/r^n ] .
Aussi bien, Newton ne revendiqua-t-il jamais l'antériorité sur la loi en 1/r², mais par contre, les "théorèmes remarquables" de la loi d'attraction universelle sont bien de lui et non de Hooke !
Corollaire, proposition 7 : la trajectoire est un cercle de rayon a, le centre de force sur la circonférence. Faire la figure et déduire immédiatement que h/(aire)² varie comme 1/r^5. (cf Force centrale en 1/r⁵)
Corollaire, la proposition 10, variorum115 : la loi de Hooke en -k/m r donne bien une ellipse de Hooke:
démonstration: h /(aire)² = r/(2p².OD²), avec OD longueur du demi-diamètre conjugué, et p la longueur podaire. Or le théorème VII.31 d'Apollonius (géométrie affine de l'ellipse) dit que l'aire du parallélogramme construit sur 2 demi-diamètres conjugués est constante : p.OD = cste = a.b ; donc g(r) = k r ;CQFD.
Remarque : la symétrie de Corinne donne immédiatement la solution dans le cas répulsif : une hyperbole de centre O.
Remarque 2 : Hooke avait sans doute l'antériorité sur ce problème (< 1684?), via une méthode discrète ( cf mécanique newtonienne discrète )
Corollaire, la proposition 11, variorum125 : la loi en 1/r² redonne bien les lois de Kepler:
C'est ce qui a fait la gloire de Newton dans le deMotu de 1684. Plus exactement, Newton démontre que si (T) est une ellipse de Kepler, alors g(r) = k/r². Il démontrera la réciproque (édition 1713, proposition 17) en utilisant intuitivement le théorème de Cauchy : les deux C.I.(conditions initiales) position, vitesse déterminent une unique ellipse. Attention : chausse-trappe dans le cas de la spirale, et Newton l'évite !
Il faut donc démontrer que le rapport chute/(aire)² ~1/r² : cf mouvement keplerien