Recherchez sur tout Techno-Science.net
       
Techno-Science.net : Suivez l'actualité des sciences et des technologies, découvrez, commentez
 A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | +
Moyenne

Introduction

La moyenne est une mesure statistique caractérisant les éléments d'un ensemble de quantités : elle exprime la grandeur qu'auraient chacun des membres de l'ensemble s'ils étaient tous identiques sans changer la dimension globale de l'ensemble (En théorie des ensembles, un ensemble désigne intuitivement une collection d’objets (les éléments de l'ensemble), « une multitude...). Il y a plusieurs façons de calculer la moyenne (La moyenne est une mesure statistique caractérisant les éléments d'un ensemble de quantités : elle exprime la grandeur qu'auraient chacun...) d'un ensemble de valeurs, choisies en fonction de la grandeur physique (Une grandeur physique est un ensemble d'unités de mesure, de variables, d'ordres de grandeur et de méthodes de mesure (qui sont l'objet de la métrologie) lié à un aspect ou phénomène particulier...) que représentent ces nombres. Dans le langage courant, le terme « moyenne » réfère généralement à la moyenne arithmétique.

Que représente la moyenne ?

En statistique (Une statistique est, au premier abord, un nombre calculé à propos d'un échantillon. D'une façon générale, c'est le...)

La moyenne est la valeur unique que devraient avoir tous les individus d'une population (ou d'un échantillon) pour que leur total soit inchangé. C'est un critère de position.

Dans la plupart des cas, le total formé par les individus d'une population est la somme de leurs valeurs. La moyenne est alors la moyenne arithmétique. Mais si le total représenté par une population ou un échantillon n'est pas la somme de leurs valeurs, la moyenne pertinente ne sera plus la moyenne arithmétique.

Si, par exemple, le total d'un ensemble d'individus est calculé par l'inverse (En mathématiques, l'inverse d'un élément x d'un ensemble muni d'une loi de composition interne · notée multiplicativement, est un élément y tel que x·y = y·x = 1, si 1...) de la moyenne arithmétique des inverses (cas des vitesses d'un ensemble de fractions d'un trajet, par exemple), on doit calculer leur moyenne harmonique (Dans plusieurs domaines, une harmonique est un élément constitutif d'un phénomène périodique ou vibratoire (par exemple en électricité : les « courants harmoniques »,...).

Si, par exemple, le total d'un ensemble d'individus est le produit de leurs valeurs, il convient de calculer leur moyenne géométrique.

On rencontre, en physique (La physique (du grec φυσις, la nature) est étymologiquement la « science de la nature ». Dans un sens général et...), de multiples moyennes : la capacité moyenne d'un ensemble de condensateurs en série est la moyenne harmonique de leurs capacités.

La moyenne ne peut donc se concevoir que pour une variable (En mathématiques et en logique, une variable est représentée par un symbole. Elle est utilisée pour marquer un rôle dans une formule, un prédicat ou un algorithme. En statistiques, une variable...) quantitative. On ne peut pas faire le total des valeurs d'une variable qualitative. Quand la variable est ordinale, on lui préférera la médiane.

Exemple de la moyenne scolaire

La moyenne est beaucoup utilisée en évaluation scolaire. Dans de nombreux systèmes scolaires, une partie de l'évaluation des élèves débouche sur une note chiffrée, par exemple

  • en France, en Tunisie et au Maroc : de 0 à 10 ou de 0 à 20 (0 étant la plus mauvaise note, 10 ou 20 la meilleure) ;
  • en Suisse : de 1 à 6 (1 étant la plus mauvaise note, 6 la meilleure);
  • en Allemagne : de 6 à 1 (6 étant la plus mauvaise note, 1 la meilleure);
  • au Canada : de 0 à 100 (100 étant la meilleure note et 0 la plus mauvaise).

On peut alors calculer la moyenne des notes d'une classe dans une matière, ou la moyenne des notes d'un élève dans une matière. Ces moyennes ont des sens (SENS (Strategies for Engineered Negligible Senescence) est un projet scientifique qui a pour but l'extension radicale de l'espérance de vie humaine. Par une évolution progressive allant du ralentissement du...) différents :

  • la moyenne de la classe est censée représenter un « niveau global », si tant est que cela ait un sens ;
  • dans le cas d'un examen de grande ampleur, comme par exemple le Baccalauréat, où de nombreux élèves passent la même épreuve mais sont corrigés par différents professeurs, la différence des moyennes entre les groupes peut indiquer une différence de correction selon le professeur (certains étant plus sévères, d'autres plus tolérants), et l'on peut par exemple effectuer une correction de notes, une « mise en adéquation », afin que les groupes aient tous la même moyenne ; par exemple, si m1, m2… sont les moyennes des groupes et M la moyenne globale, alors les notes du groupe i seront multipliées par M/mi ;
  • dans le cas d'un élève : la moyenne des notes sur une matière permet de niveler les résultats ; ainsi, si les résultats sont fluctuants, les faiblesses d'un moment sont rattrapées par les réussites d'un autre moment ;
  • la moyenne des notes d'un élève dans plusieurs matières est une autre manière de niveler les résultats, non plus dans le temps (Le temps est un concept développé par l'être humain pour appréhender le changement dans le monde.) mais selon la matière : les points forts rattrapent les points faibles ; la moyenne est alors un critère de sélection, sachant que ce que l'on demande d'un élève, ce n'est pas qu'il soit bon partout, mais qu'il ait des qualités permettant de rattraper ses défauts ; lorsque certaines matières sont plus importantes que d'autres, on applique des coefficients de pondération (cf. ).

Dans ces exemples, la moyenne est un lissage des valeurs. On peut bien sûr se demander si la moyenne est un critère pertinent de sélection (voir Évaluation sommative) ; en général, ce n'est pas le seul critère qui entre en compte, à l'exception de certains examens et concours.

En géométrie

En géométrie, la moyenne correspond à la notion d'isobarycentre. Lorsque l'on veut décrire le comportement de plusieurs objets, il est parfois possible de les remplacer par un objet (De manière générale, le mot objet (du latin objectum, 1361) désigne une entité définie dans un espace à trois dimensions, qui a une...) fictif dont les propriétés (telle la position dans l'espace) sont la moyenne des propriétés des différents objets. En mécanique rationnelle, cet objet fictif est appelé centre de masse (Le terme masse est utilisé pour désigner deux grandeurs attachées à un corps : l'une quantifie l'inertie du corps (la masse inerte) et l'autre la contribution du corps...) de l'ensemble des objets considérés. En fait, dans la mesure où les objets ont en général des masses différentes, la notion de centre de masse correspond plutôt à la notion géométrique de barycentre (Le barycentre est un point mathématique (géométrie analytique) construit à partir d'un ensemble d'autres. Il correspond), qui est une sorte de moyenne pondérée (voir plus loin).

En probabilités

Lorsque les valeurs sont aléatoires, la moyenne est appelée « espérance ». Si l'on peut déterminer une loi statistique de cette variable aléatoire, l'espérance est en général un des paramètres fondamentaux de cette loi.

Source: Wikipédia publiée sous licence CC-BY-SA 3.0. Vous pouvez soumettre une modification à cette définition sur cette page.

La liste des auteurs de cet article est disponible ici.