Théorème de projection sur un convexe fermé - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Autres applications

Ce théorème possède de multiples autres applications.

Il est utilisé en analyse fonctionnelle. Il peut donner lieu à des algorithmes programmables en dimension finie. Un exemple est donné par le théorème de Stampacchia.

En théorie des jeux, John von Neumann établit un théorème fondamental montrant l'existence de stratégies optimales pour les différents joueurs dans un contexte très général. Ce résultat est une conséquence du théorème de projection dans le cadre d'un Hilbert. Il possède de nombreuses conséquences, dont l'une célèbre est l'existence d'un Optimum de Pareto sous des hypothèses pas trop contraignantes en sciences économiques.

En programmation linéaire, ce théorème est utilisé pour, par exemple dans le cas des théorèmes de l'alternative trouver des solutions à des systèmes d'inéquations linéaires.

Principaux corollaires

Dans ce paragraphe E désigne un espace de Hilbert réel.

Supplémentaire orthogonal

Le théorème de projection est l'un des outils possibles pour prouver l'existence d'un supplémentaire orthogonal pour tout sous-espace vectoriel fermé d'un Hilbert (ou plus généralement, pour tout sous-espace vectoriel complet d'un préhilbert), donc l'existence d'une projection orthogonale sur ce sous-espace. (Une autre approche pour prouver ce corollaire est d'utiliser simplement l'inégalité de Bessel.)

Ce corollaire est le principal ingrédient de preuve du théorème de représentation de Riesz. Joint à ce dernier, il permet de démontrer le théorème de Lax-Milgram, qui aide à la résolution d'équation aux dérivées partielles.

Ce corollaire permet également, dans le cadre particulier hilbertien, de démontrer une version simplifiée du théorème de Hahn Banach sans faire appel au lemme de Zorn.

Séparation des convexes

Il existe une autre forme du théorème de Hahn-Banach :

Premier théorème de séparation —  Soient A et B deux parties de E non vides et disjointes telles que A - B soit un convexe fermé. Il existe alors une forme linéaire continue f telle que :

\sup_{x \in A} f(x) < \inf_{y \in B} f(y) .

Ce résultat s'exprime encore sous la forme suivante :

Deuxième théorème de séparation — Soient A et B deux parties de E non vides et disjointes telles que A soit un convexe fermé et B un convexe compact. Alors il existe une forme linéaire continue f telle que :

\sup_{x \in A} f(x) < \inf_{y \in B} f(y) .

Dans le cas de la dimension finie, une forme du théorème de la séparation ne nécessite plus le caractère fermé du convexe :

Séparation en dimension finie —  Si E est de dimension finie, soient x un élément de E et C un convexe ne contenant pas x, alors il existe une forme linéaire f non nulle telle que :

 f(x) \ge \sup_{y \in C} f(y) .
Page générée en 0.124 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise