Énergie éolienne - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

L'avenir de l'énergie éolienne

La technologie

La montée du prix des énergies fossiles a rendu les recherches dans le domaine de l’éolien plus attirantes pour les investisseurs.

La technologie actuellement la plus utilisée pour capter l’énergie éolienne utilise une hélice sur un axe horizontal. Certains prototypes utilisent un axe de rotation vertical : une nouvelle technologie à axe vertical est celle du kite wind generator (inspirée du kitesurf) qui, pour capter un vent le plus fort possible, utilise des câbles et des ailes qui peuvent arriver à 800/1 000 m de hauteur.

Schéma des pales d'une petite éolienne

La technologie à axe horizontal présente certains inconvénients :

  • L'encombrement spatial est important, il correspond à une sphère d’un diamètre égal à celui de l’hélice, reposant sur un cylindre de même diamètre. Un mât de hauteur importante est nécessaire pour capter un vent le plus fort possible.
  • Le vent doit être le plus régulier possible, et donc interdit des implantations en milieu urbain ou dans un relief très accidenté.
  • La vitesse de l'extrémité d'une pale croit rapidement avec sa taille, au risque de causer défauts de fonctionnement et bruits pour le voisinage. Dans la pratique, les pales des grandes éoliennes ne dépassent jamais une vitesse de l'ordre de 100 m/s à leur extrémité. En fait, plus l'éolienne est grande, et moins le rotor tourne vite (moins de 10 tours/minute pour les grandes éoliennes offshore).

Les nouvelles éoliennes en cours de développement visent à aboutir à une technologie qui s’affranchit du bruit, de l’encombrement et de la fragilité des éoliennes à pales, tout en étant capables d’utiliser le vent quelle que soit sa direction et sa force. De nombreuses variantes sont étudiées par des essais réels en grandeur nature. Certaines éoliennes sont de petite taille (3 à 8 mètres de large, 1 à 2 mètres de haut), avec pour objectif de pouvoir les installer sur les toitures terrasses des immeubles d’habitation dans les villes, ou sur les toitures des immeubles industriels et commerciaux, dans des gammes de puissances allant de quelques kW à quelques dizaines de kW de puissance moyenne. Leur vitesse de rotation est faible et indépendante de la vitesse du vent. Leur puissance varie linéairement avec le cube de la vitesse du vent (la vitesse du vent en m/s élevé à la puissance 3, quand la vitesse du vent est doublée la puissance est multipliée par 8), qui peut varier de 5 km/h à plus de 200 km/h, sans nécessiter la « mise en drapeau » des éoliennes à pales.

Rendement des éoliennes

Les éoliennes sont caractérisées par leur rendement en fonction de la vitesse du vent. Les éoliennes actuelles présentent une courbe plafonnée et limitée à des vents de moins de 90 km/h.

Les éoliennes en cours de développement sont conçues pour fonctionner avec des vents dépassant les 200 km/h et produire une quantité d’énergie proportionnelle à la vitesse du vent sur la totalité de la plage de fonctionnement.

L'Ademe a commandé un rapport à la société Climpact. Les résultats de ce rapport indiquent que par les effets du réchauffement climatique, les vents servant à la production éolienne d'énergie devraient diminuer de près de 10 % d'ici à 2100.

Le stockage

Énergie intermittente et incontrôlable, l'éolien a besoin de grandes capacités de stockage :

1) Pour stocker l'énergie éolienne en site isolé. La limite est l'investissement en capacité de stockage par batteries de grande capacité, qui coute cher et peut être polluant.

2) En tant que stockage tampon en complément de la production d'un parc éolien. Lorsque la production éolienne faiblit, le déstockage fournit le complément pour garder la production finale quasi stable. Lorsque la production éolienne est suffisamment forte, il y a reconstitution du stock. Ainsi les 2 courbes de production éolienne et stockage sont opposées et complémentaires. La somme des deux fournit au réseau une courbe de production lissée (comme au parc éolien de Sapporo au Japon).

Sur le plan purement technique, le dernier retour d'expérience sur une tentative visant le 100 % de production d'électricité d'origine renouvelable, initiée en Allemagne en 2006 à la demande de Mme Merkel, démontre qu'il est possible d'y parvenir. Ce qui pourrait permettre à terme de rendre l'Allemagne totalement indépendante en énergie électrique. Pour tenter cette expérience, le stockage de type STEP (stations de transfert d'énergie par pompage) a été utilisé pour la partie éolien, exactement comme le fait la France avec le nucléaire pour adapter la production peu souple des centrales à la variabilité de la demande journalière (dont la courbe peut être consultée ici : [6]).

Aux États-Unis, une entreprise conçoit de nouvelles éoliennes qui produisent de l'air comprimé au lieu de l'électricité. Dans la nacelle des éoliennes au lieu d'un alternateur se trouve donc un compresseur d'air. L'air comprimé est stocké et permet de faire tourner un alternateur aux moments où les besoins se font le plus sentir. Du point de vue du stockage de l'énergie, cette façon de faire impose une conversion d'énergie (de l'air comprimé vers l'électricité, avec un rendement réduit), mais permet de positionner la production électrice sur le pic de consommation, où l'électricité est payée plus chère, avec une conversion de moins que par le processus classique (électricité vers stockage puis stockage vers électricité). Certains pensent même que l'on pourrait utiliser directement l'air comprimé ainsi produit pour alimenter des voitures automobiles propulsées avec ce fluide.

Sur le même principe, on peut concevoir d'utiliser l'énergie éolienne pour pomper directement de l'eau, en suivant le principe des STEP.

L'éolien en mer

L'installation de fermes éoliennes en mer est l'une des voies de développement de l'éolien, car elle s'affranchit en grande partie du problème des nuisances esthétiques et de voisinage. D'autre part le vent est beaucoup plus fort et constant qu'à terre : un régime de marche de 96% est par exemple estimé en mer du Nord. Cette solution permet le développement technique progressif d'éoliennes de très grande puissance.

Ainsi, la production d'électricité éolienne en mer est plus importante qu'à terre à puissance équivalente. On donne couramment comme moyenne 2 500 MWh par MW installé en mer au lieu de 2 000 MWh par MW installé à terre. Dans les zones maritimes géographiquement très favorables à l'éolien, les estimations des études indiquent le potentiel de cas extrêmes de 3 800 MWh par MW installé.

Diverses solutions sont envisagées pour diminuer le coût du kWh produit. Parmi les solutions étudiées, on peut noter :

  • la construction d'éoliennes de plus grande puissance, produisant de 5 à 10 MW par unité ;
  • la mise au point de systèmes flottants, ancrés, permettant de s'affranchir des coûts des fondations de pylônes à grande profondeur.

Les projets des futures éoliennes en mer, à l'horizon 2010, visent une puissance de 10 MW unitaire, avec un diamètre de pales de 160 mètres.

Une option permettant de réduire le coût d'investissement au kW installé pourrait être à terme de coupler sur le même pylône une éolienne offshore et une ou plusieurs hydroliennes.

En France, la Compagnie du vent a annoncé en novembre 2006 son projet de parc des Deux Côtes, un ensemble de 141 éoliennes totalisant 705 MW, à 14 km au large de la Seine-Maritime et de la Somme. En Angleterre, le consortium London Array a un projet à 20 km de l'embouchure de la Tamise, qui représenterait 271 turbines pour une puissance allant jusqu'à 1 000 MW. Avec le projet additionnel de Thanet, c'est maintenant 1 800 MW qui devraient être installés dans l'estuaire de la Tamise. Le projet britannique de Triston Knol fera quant à lui 1 200 MW.

La compagnie norvégienne Norsk Hydro, spécialiste dans l'exploitation pétrolière et gazière offshore, développe un concept issu des plateformes pétrolières flottantes. Le principe est de monter l'éolienne sur un caisson flottant en béton (ancré au moyen de câbles, par 200 à 700 m de fond). Ce projet révolutionnerait l'éolien offshore, car il permettrait de ne plus se soucier de la profondeur, et donc d'installer des champs géants (jusqu'à 1 GW de puissance installée) loin des côtes. Cela permettrait par ailleurs de réduire le prix des champs éoliens offshore, en évitant la construction de coûteuses fondations sous-marines.

L'éolien urbain

L'éolien urbain est un concept qui suppose que l'on peut installer et exploiter des éoliennes en milieu urbain. L'éolien urbain recherche des turbines éoliennes compactes capables de proposer une production d'électricité décentralisée, qui s'affranchirait du transport et des pertes générées.

Les turbines éoliennes existantes n'ont encore jamais atteint des rendements intéressants en milieu urbain. Toutefois, les concepteurs ont déjà mis au point des prototypes sur lesquels il n'y a plus de pales comme celles d'une hélice d'avion, mais un rotor fixé à ses deux extrémités, équipé de lames pour procurer un couple constant quelle que soit leur position par rapport à l'axe du vent. Dans certains projets un stator extérieur est ajouté au rotor, élément fixe destiné à dévier la course du vent afin d'optimiser le rendement de l'ensemble. La conception mécanique des turbines éoliennes les rend résistantes aux vents violents, et les affranchit du besoin d'être arrêtées quand le vent dépasse la vitesse de 90 km/h. Leur production est quasiment proportionnelle à la vitesse du vent jusqu'à plus de 200 km/h, sans palier limitant comme sur les éoliennes classiques.

Projection des productions électriques mondiales éoliennes

Depuis une dizaine d'années, selon les statistiques du Global Wind Energy Council :, la production d'électricité éolienne mondiale double approximativement tous les trois ans . En retenant pour la production d'électricité 2 000 h d'équivalent plein régime par an, on arrive à :

  • 1997 : 7,6 GW / 15 TWh
  • 2000 : 17,4 GW / 35 TWh
  • 2003 : 39 GW / 78 TWh
  • 2006 : 74 GW / 148 TWh
  • 2009 : 158 GW / 316 TWh

L'éventail des prévisions de puissances qui seront installées en 2012 va de 500 à 600 TWh[réf. souhaitée] selon différents organismes.

Par comparaison, selon l'agence internationale de l'énergie, la production électrique mondiale était en 2007 de 19 854 TWh dont 2 719 TWh d'origine nucléaire .

Page générée en 0.155 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise