Polynôme cyclotomique - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Extension cyclotomique

L'extension cyclotomique est par définition le corps de rupture d'un polynôme cyclotomique, c’est-à-dire le plus petit corps contenant une racine primitive n-ième d'un polynôme cyclotomique. (Rappelons qu'un corps de rupture d'un polynôme est une extension de corps permettant une factorisation de ce polynôme.) Il possède des propriétés fortes, à l'origine de nombreuses applications:

Cette propriété est générale aux corps de ruptures. La démonstration est donnée dans l'article Extension algébrique.

Cela signifie que le plus petit corps contenant une racine du polynôme contient aussi toutes les racines du polynôme. Dire que ce corps est une extension galoisienne signifie deux choses: d'une part, les polynômes minimaux de ce corps n'ont pas de racines multiples (ce qui est toujours vraie pour les extensions sur les nombres rationnels) ; et d'autre part, tous les morphismes de ce corps dans les nombres complexes ont pour image le corps lui-même. Ce sont donc des automorphismes. Ils forment une structure de groupe appelé groupe de Galois. La théorie de Galois indique que c'est la bonne structure pour rechercher une expression des racines par radicaux.

  • L'extension cyclotomique est abélienne.

Cela signifie que le groupe de Galois est commutatif (ou abélien). L'équation polynomiale cyclotomique est alors résoluble par radicaux. Autrement dit, les solutions s'expriment à l'aide des uniques quatre opérations (additionner, soustraire, diviser et multiplier) et des racines p-ième appliquées un nombre fini de fois sur des nombres rationnels et l'imaginaire pure i. Ce résultat est connu sous le nom de théorème d'Abel. Il est ainsi possible par exemple de résoudre par radicaux l'équation cyclotomique donnant la racine dix-septième de l'unité. C'est une condition nécessaire pour la résolution de la construction par la règle et le compas du polygone régulier à dix-sept côtés (voir ci-dessous).

  • L'extension cyclotomique est une tour d'extension quadratique si et seulement si n est de la forme suivante:
n=2^k \prod_iF_i\;
Où les Fi sont des nombres premiers de Fermat distincts.

Ce résultat est aussi connu sous le nom de Théorème de Gauss-Wantzel. Une tour d'extension quadratique est un corps tel que pour chaque élément x du corps, il existe une suite de sous-corps K0, K1, ..., Kp avec K0 égal au corps de base, ici celui des rationnels, Kp contient x, et, pour tout i entre 1 et p, Ki contient Ki - 1 et est un espace vectoriel de dimension 2 sur Ki - 1.

Dire que Ki contient Ki - 1 et est un espace vectoriel de dimension 2 sur Ki - 1 revient seulement à dire que tout élément de Ki s'exprime comme la somme d'un nombre de Ki - 1 et d'une racine carré d'un nombre de Ki - 1. En particulier, tout élément de Ki s'exprime comme racine d'un polynôme de degré 2 sur Ki-1. Cette propriété est démontrée dans l'article Extension quadratique.

Or l'article sur les nombres constructibles montre qu'un point est constructible si et seulement s'il vérifie cette propriété. Cette propriété permet donc de déterminer la liste des polygones constructibles et assure qu'ils le sont effectivement.

Un nombre premier de Fermat est un nombre premier de la forme 2^{2^k} + 1 où k est un entier. Les nombres premiers de Fermat connus sont 3, 5, 17, 257 et 65 537.

Page générée en 0.146 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise