Introduction à la relativité générale - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Applications astrophysiques

Les modèles fondés sur la relativité générale jouent un rôle important en astrophysique où les masses mises en jeu peuvent être très importantes, et le succès de ces modèles apporte un nouveau témoignage quant à la validité de la théorie.

Effets de lentille gravitationnelle

Croix d'Einstein : quatre images du même objet astronomique, provoquées par une lentille gravitationnelle

Comme la lumière est défléchie dans un champ de gravitation, il est possible que la lumière d'un objet distant atteigne l'observateur par deux ou plusieurs chemins. Par exemple, si la lumière d'un objet très éloigné, et suffisamment brillant, comme un quasar, passe à côté d'une galaxie massive, elle est défléchie vers un observateur sur la Terre, et simultanément, elle peut passer de l'autre côté de la même galaxie, et être défléchie en sens inverse, atteignant ainsi l'observateur d'une direction légèrement différente. Le résultat est que cet observateur va observer le même objet astronomique à deux endroits différents du ciel. Ce type de convergence est bien connu quand il fait intervenir la déviation par une lentille optique, et par suite l'effet gravitationnel est appelé lentille gravitationnelle.

Les effets de lentille gravitationnelle constituent un outil important en astronomie pour trouver les propriétés de l'objet jouant le rôle de lentille. Même dans les cas où l'objet n'est pas visible, la forme de l'image à travers la lentille donne de l'information sur la distribution des masses responsables de la déflexion de la lumière. En effet, la distribution de matière peut faire apparaître l'objet lointain en plusieurs directions, avec éventuellement des intensités différentes. À la limite, l'objet peut apparaître sous la forme d'un arc de cercle (anneau d'Einstein). En particulier les lentilles gravitationnelles sont une manière de mesurer la distribution de la matière noire, qui n'émet pas de lumière, et qui ne peut être observée que par ses effets gravitationnels. Une application particulièrement intéressante est l'observation à grand champ, où les masses formant lentille sont réparties sur une fraction significative de l'univers observable, ce qui peut être utilisé pour obtenir des informations concernant les propriétés à grande échelle et l'évolution de notre cosmos.

Ondes gravitationnelles

Les ondes gravitationnelles sont une conséquence directe de la théorie d'Einstein. Ce sont des ondes de distorsion de la géométrie de l'espace, qui se propagent dans le vide à la vitesse de la lumière. (Il ne faut pas les confondre avec les ondes de gravité de la dynamique des fluides, qui sont un concept tout différent.).

On a détecté indirectement l'existence des ondes gravitationnelles en observant certaines étoiles binaires. Ce sont des paires d'étoiles qui orbitent autour du centre de masse commun, et ce faisant, perdent graduellement leur énergie en émettant des ondes gravitationnelles. Pour des étoiles ordinaires comme le Soleil, la perte de masse serait trop faible pour être détectable. Mais en 1974, cette perte d'énergie a été observée dans un pulsar binaire (PSR 1913+16). Dans un tel système, une des étoiles est un pulsar. Ceci a deux conséquences : un pulsar est un un objet extrêmement dense (une étoile à neutrons), ce qui lui permet d'être très proche de son compagnon, et d'autre part il émet un d'ondes radio avec une très grande régularité. Le champ gravitationnel avoisinant perturbe la régularité avec laquelle nous recevons à chaque tour ce faisceau, ce qui permet de l'analyser. La proximité des deux membres du couple fait qu'il émet une quantité substantielle d'ondes gravitationnelles, et que celles-ci peuvent notamment être repérées dans cette dernière analyse.

Les découvreurs de PSR 1913+16, Russell Hulse et Joseph Taylor, ont reçu le Prix Nobel de physique en 1993. Depuis, plusieurs autres pulsars binaires ont été trouvés. Les plus utiles sont ceux dont les deux composants sont des pulsars, parce qu'ils donnent les tests les plus précis de la relativité générale.

Actuellement, un but majeur de la recherche en relativité est la détection directe d'ondes gravitationnelles. Dans ce but un nombre de détecteurs d'ondes gravitationnelles au sol sont en fonctionnement ou en construction, et une mission de lancement d'un détecteur en orbite, LISA est actuellement à l'étude, avec une maquette prévue pour un lancement en 2010. Le grand avantage d'un détecteur en orbite est d'échapper au « bruit » sismique incessant qui agite la Terre, et limite la sensibilité des détecteurs au sol. Si les ondes gravitationnelles sont détectées, elles pourront être utilisées pour obtenir de l'information sur des objets compacts tels que des étoiles à neutrons ou des trous noirs, et également pour faire de l'astronomie de l'univers dans les fractions de seconde au début du Big Bang.

Les trous noirs

Quand la masse est concentrée dans une région de l'espace suffisamment compacte, la relativité générale prédit la formation d'un trou noir - une région de l'espace dont l'attraction gravitationnelle est si forte que même la lumière ne peut s'en échapper. Certains types de trous noirs sont estimés être le point final de l'évolution d'étoiles particulièrement massives. D'autre part, il existe des trous noirs supermassifs, dont la masse peut varier du million au milliard de masses solaires, au centre de la plupart des galaxies, et ils jouent un rôle clef dans les modèles actuels de la formation des galaxies au cours des milliards d'années.

Jet émanant de la région centrale de la galaxie M87 et mû par le tourbillon de matière tombant sur le trou noir du centre

La matière tombant sur un objet compact est l'un des mécanismes les plus efficaces pour émettre de l'énergie sous forme de rayonnement électromagnétique, et la matière tombant sur des trous noirs passe pour l'un des phénomènes astronomiques les plus brillants. Des exemples notables, de grand intérêt pour les astronomes, sont les quasars et d'autre types de noyaux de galaxies actives. Dans les bonnes conditions, la matière qui tombe en s'accumulant sur un trou noir peut conduire à la formation de jets relativistes, où des faisceaux focalisés de matière sont lancés dans l'espace avec une telle énergie qu'ils atteignent des vitesses proches de celle de la lumière.

Plusieurs propriétés font des trous noirs les sources les plus prometteuses d'ondes gravitationnelles. Une raison est que les trous noirs sont les objets les plus compacts qui puissent orbiter autour l'un de l'autre dans un système binaire ; par conséquence, les ondes gravitationnelles émises par un tel système sont spécialement fortes. Une autre raison découle de ce qui est connu comme le théorème de calvitie, qui énonce qu'un trou noir ne dépend que de trois choses : sa masse, sa charge électrique et sa rotation, et non d'autres paramètres individuels divers. Cependant, pendant que la matière environnante tombe sur le trou noir, elle se débarrasse de toutes ses autres propriétés géométriques en rayonnant des ondes gravitationnelles.

Cosmologie

Carte des rayonnements émis moins de quelques centaines de milliers d'années après le big bang, mesurée par le télescope satellite WMAP.

Un des aspects les plus importants de la relativité générale est qu'elle permet de construire un modèle global de l'univers. Une structure remarquable est que la structure du cosmos à grande échelle apparaît pratiquement uniforme, quelle que soit la position de l'observateur ou la direction dans laquelle il observe. On dit que l'univers est globalement homogène et isotrope. Une structure aussi simple de l'univers peut être donnée par une solution simple des équations d'Einstein. Le modèle standard de la cosmologie actuel est obtenu en combinant cette solution avec les théories décrivant les propriétés de la matière qu'il contient : thermodynamique, physique nucléaire, physique des particules. Selon ces modèles, notre univers actuel a explosé d'un état extrêmement dense et chaud (le Big Bang), il y a environ 14 milliards d'années, et s'est étendu constamment depuis.

Il existe une ambiguïté dans les équations d'Einstein, où l'on peut ajouter un terme appelé constante cosmologique, qui n'a d'effet qu'à très grande distance. Quand ce terme est présent, l'espace vide agit comme une source de gravitation attractive, ou répulsive, selon le signe qu'on lui donne. Einstein avait introduit ce terme en 1917 dans son papier pionnier sur la cosmologie, et avec une motivation très spéciale : à l'époque, l'univers était tenu pour statique et éternel, et le nouveau terme - pris avec un signe répulsif - devait compenser l'attraction de la matière, qui provoquait le Big Bang. Mais d'une part on s'aperçut que l'univers n'était pas statique, mais en dilatation et d'autre part que l'artifice ne résolvait pas le problème : des concentrations locales de matière ne pouvaient que s'accentuer. Einstein a donc abandonné cette proposition. Cependant, à partir de 1998, un ensemble de preuves astronomiques s'est accumulé pour montrer que, contrairement au modèle sans terme cosmologique, où l'expansion de l'univers se ralentit, cette expansion est actuellement en voie de s'accélérer. Ceci montre qu'il y a une constante cosmologique de signe répulsif, que l'on peut aussi interpréter en termes d'énergie noire aux propriétés très spéciales, et qui emplit tout l'espace.

Page générée en 0.195 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise