Atmosphère de Vénus - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Possibilité de vie

Des organismes vivants, connu sous le nom d'extrêmophiles, existent sur Terre, préfèrent les habitats aux conditions extrêmes. Les organismes thermophiles et hyperthermophiles se multiplient dans des températures atteignant le point d'ébullition de l'eau, les organismes acidophiles se multiplient à un pH de 3 ou inférieur, les polyextrêmophiles peuvent survivre à un certain nombre de conditions extrêmes, et beaucoup d'organismes de ce type existent sur Terre.

Toutefois, la vie pourrait exister hors de cette zone extrême tel qu'au sommet des nuages, de la même manière que certaines bactéries terrestres qui vivent et se reproduisent dans les nuages de la Terre, et il a été plusieurs fois considéré que de tels phénomènes pouvaient exister sur Vénus. Les microbes éventuellement présents dans l'atmosphère épaisse et nuageuse pourraient être protégés des radiations solaire par le soufre qui se trouve dans l'air.

Les analyses des données recueillies par les missions Venera, Pioneer et Magellan ont montré la présence à la fois de sulfure d'hydrogène (H2S) et de dioxyde de soufre (SO2) dans la haute atmosphère, de même que de l'oxysulfure de carbone (COS). Les deux premiers gaz réagissent l'un avec l'autre. De plus, l'oxysulfure de carbone est remarquable pour être exceptionnellement difficile à produire par des moyens non-organiques. Ce composant pourrait donc être considéré comme un indicateur possible de vie.

Conditions atmosphériques et climatiques

Vénus présente un climat infernal en raison de nombreux facteurs. Elle est aussi la planète la plus chaude du système solaire avec des températures pouvant dépasser 480 °C.

Nuages

Vénus en vraies couleurs, telle que l'on peut la voir à l'œil nu (par Mariner 10 lors de la mission de 1973 à 1975).

Les nuages vénusiens sont épais et composés de dioxyde de soufre et de gouttelettes d'acide sulfurique. Ces nuages reflètent 75 % de la lumière solaire qui les atteint.

La couverture nuageuse est telle que seule une petite partie de la lumière peut la traverser et toucher la surface, et le niveau de lumière est seulement d'environ 5,000–10,000 lux avec une visibilité de trois kilomètres. À ce niveau peu ou pas d'énergie solaire peut être collectée par une sonde. L'humidité à ce niveau est de 0,1 %.

L'acide sulfurique est produit dans la haute atmosphère par l'action photochimique du Soleil sur le dioxyde de carbone, le dioxyde de soufre, et la vapeur d'eau. Les photons ultraviolets d'une longueur d'onde inférieure à 169 nm peuvent photodissocier le dioxyde de carbone en monoxyde de carbone et en atome d'oxygène. Un atome d'oxygène est hautement réactif : quand il réagit avec du dioxyde de soufre il forme du trioxyde de soufre, qui peut se combiner avec la vapeur d'eau pour former de l'acide sulfurique.

CO2 → CO + O
SO2 + O → SO3
SO3 + H2O → H2SO4

Les pluies d'acide sulfurique n'atteignent jamais le sol (cf. ci-dessous).

Virga

Les fréquentes pluies vénusiennes d'acide sulfurique (H2SO4) n'atteignent jamais le sol, mais s'évaporent à cause de la chaleur avant d'atteindre la surface, ce phénomène est connu sous le nom de virga. Parties entre 48 et 58 km d'altitude (donc de la couche nuageuse), ces gouttes d'acide, arrivées à environ 30 km d'altitude, vont rencontrer des températures telles qu'elles finissent par s'évaporer. Les gaz issus de l'évaporation remontent alors pour réalimenter les nuages.

En effet, l'acide sulfurique s'évapore vers 300°C ; mais vers cette température il se décompose en eau et en dioxyde de soufre. Ce sont ces gaz qui sont produits par les gouttes au-dessus de 300°C, donc bien avant d'arriver au sol (à 470°C).

Orages

Les nuages de Vénus peuvent produire des éclairs rouges (jusqu'à 25 par seconde) au même titre que les nuages terriens. L'existence de ces éclairs a longtemps été sujet de controverses depuis leur détection par la sonde Venera. Toutefois en 2006–2007 Venus Express a détecté des vagues électromagnétiques, dont la cause est attribué aux éclairs. De même la sonde Pioneer Venus y a même enregistré le grondement quasiment permanent du tonnerre, grondement constant causé par une atmosphère vénusienne très dense et qui augmente donc la propagation du son.

Lorsque la sonde Cassini-Huygens a survolé à deux reprises Vénus avant de partir pour Saturne, on enregistra toutes les émissions provenant de Vénus afin de déceler d'éventuelles décharges électriques. Mais absolument rien ne fut détecté. Trois hypothèses sont actuellement admises : soit il n'y a finalement pas d'éclairs d'orage dans l'atmosphère de Vénus, soit ils sont cent fois plus faibles que sur Terre (et n'ont donc pas pu être enregistrés), soit ils sont extrêmement rares et ne se sont pas produits lors des survols de la sonde.

Les scientifiques déclarent que l'absence d'éclair n'est pas une surprise. En effet, les décharges électriques sont créées par des mouvements verticaux des masses nuageuses. Or l'on a vu plus haut que la circulation atmosphérique vénusienne s'effectue surtout de façon horizontale.

Eau

Comme la Terre, Vénus possédait autrefois de grandes quantités d'eau (on parle d'océans) ; cependant celle-ci s'est complètement évaporée du fait de la proximité de Vénus par rapport au Soleil (Vénus est 1,38 fois plus proche du Soleil que la Terre) et elle reçoit ainsi presque 2 fois (1,91) le flux énergétique reçu par la Terre. La vapeur d'eau, un agent connu de l'effet de serre extrêmement actif, a fait s'emballer le climat vénusien. Maintenant, le climat de Vénus est très sec.

La vapeur d'eau a dû être dissociée par le rayonnement ultraviolet solaire, comme cela se produit encore actuellement.

  • L'hydrogène issu de cette décomposition a été rapidement évacué par le vent solaire, perdu à jamais.
    Le deutérium (isotope lourd de l'hydrogène), s'échappant plus lentement, s'est ainsi concentré relativement à l'hydrogène.
  • L'oxygène produit en même temps est resté sur la planète, et s'est combiné avec les roches de la croûte, et d'autant mieux en raison des hautes températures de surface.

De plus, la croûte vénusienne a dû se dessécher en profondeur, la vapeur d'eau présente actuellement doit être issue de ce dégazage résiduel.
Cela a dû empêcher l'apparition d'une tectonique des plaques de type terrestre, qui aurait pu se produire sur Vénus si elle avait connu (et continué à avoir) un climat de type terrestre avec des océans. En effet, sur Terre la croûte est constamment hydratée (et refroidie) à ses dorsales par l'eau des océans. En l'absence d'eau et avec des températures élevées, la croûte vénusienne ne peut avoir de subduction, Vénus a donc développé une tectonique à plaque unique.

Température

D'après le tableau qui suit, on remarque tout de suite que la température à la surface de Vénus est très élevée et ne varie que très peu.

Température en degrés Celsius Température en kelvin
Température radiative apparente (depuis l'espace)
-43°C
230 K
Surcroît de température dû à l'effet de serre
505°C
778 K
Température moyenne (au sol)
462°C
735 K
Température maximale
482°C
755 K
Température minimale
446°C
719 K

Ces températures incroyables ne résultent pas directement de la proximité du Soleil : en fait, l'épaisse couche nuageuse vénusienne réfléchit près de 65% de la lumière (solaire) incidente. Ainsi, le flux net d'énergie solaire au niveau du sol est inférieur à celui reçu par la Terre (voir tableau suivant).

Vénus Terre
Constante solaire 2620 W/m2 1367 W/m2
Flux net d'énergie solaire en surface 367 W/m2 842 W/m2
  • Le CO2 est bien un gaz à effet de serre, dans un large spectre, de plus on a affaire à une atmosphère dense (épaisse) et non pas à une pression partielle faible comme pour la Terre ou Mars.

La faible partie du rayonnement solaire (dont l'intensité est maximale vers 500 nm ; domaine visible) qui atteint le sol après avoir traversé la couche nuageuse est réémise dans le domaine infrarouge. Or le domaine infrarouge correspondant au maximum d'émission thermique pour un corps à la température de la surface et de la basse atmosphère de Vénus ne peut être piégé efficacement par le dioxyde de carbone, qui présente des fenêtres de transmission trop larges. Par contre, le dioxyde de soufre et la vapeur d'eau provenant du dégazage résiduel, bien qu'en très faibles quantités, absorbent bien les radiations dans ce domaine de longueurs d'onde, de même que les fines particules d'acide sulfurique qui constituent les nuages.

L'effet de serre dû à l'atmosphère vénusienne est ainsi de près de 505°C contre seulement 33°C pour la Terre. C'est pourquoi la surface vénusienne est actuellement plus chaude que celle de Mercure, bien que Vénus soit presque deux fois (1,869) plus éloignée du Soleil que Mercure.

Page générée en 0.171 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise