Démonstrations du dernier théorème de Fermat - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Entier quadratique

Une fois analysé le cas des puissances de deux, le théorème devient singulièrement plus complexe à établir. Il existe encore trois démonstrations, pour les cas n = 3, 5 et 7 fondées sur le même canevas et usant de la méthode de descente infinie.

Pour pouvoir l'appliquer, une idée fructueuse consiste à modifier l'ensemble sur lequel s'applique l'équation. Il est possible de généraliser le théorème de Fermat sur tout ensemble E muni de deux opérations l'addition et la multiplication. Les opérations sur E doivent disposer d'un minimum de propriétés, lui conférant une structure appelée anneau. Cette idée est un peu contre intuitive, si la résolution se révèle déjà ardue dans Z, l'anneau des entiers relatifs, la question ne devient-elle pas encore plus délicate sur un anneau quelconque ? En fait, l'objectif est de choisir E disposant des bonnes propriétés pour que la résolution soit plus aisée.

Cet anneau est choisi :

  • commutatif ;
  • unitaire, c'est-à-dire que la multiplication dispose d'un élément neutre 1 ;
  • intègre, c'est-à-dire que si un produit a.b est égal à 0 alors soit a soit b est nul ;
  • factoriel, ce qui signifie que tout élément se décompose de manière unique en un élément inversible pour la multiplication et un produit de nombres premiers, comme -6 est le produit de -1, 2 et 3 ;
  • et tel que tout élément inversible possède une racine nième.

Sur un tel anneau, correspondant par exemple à celui des polynômes à coefficients dans C, l'ensemble des nombres complexes, Augustin Louis Cauchy met au point une méthode générale de résolution.

La difficulté réside dans le fait que Z ne contient pas de racine nième de l'unité à l'exception de 1 et -1. L'usage d'autres anneaux contenant Z devient intéressant. Les plus simples correspondent à des ensembles Z[ω] d'entiers quadratiques c'est-à-dire des nombres de la forme a + bω où a et b sont des entiers relatifs et ω un nombre complexe tel que ω2 soit combinaison linéaire de ω et de 1 à coefficients dans Z, ce qui assure la stabilité de l'ensemble. Certains de ces ensembles contiennent des racines nième de l'unité. Tel est le cas si ω est la racine cubique de l'unité j = 1/2(1 + i√3) ou le nombre d'or 1/2(1 + √5). De plus, ces anneaux sont dit euclidiens, c'est-à-dire qu'il existe une division euclidienne. Et tout anneau euclidien est factoriel. Ils permettent de résoudre les cas n = 3 ou 5. Une approche un peu analogue permet encore de résoudre le cas n = 7.

L'efficacité des anneaux quadratiques s'arrête là. Dans le cas général, ils ne sont ni euclidiens ni factoriels, ce qui impose la mise au point d'autres idées.

Cas de l'anneau des polynômes à coefficients complexes

Augustin Louis Cauchy.

On recherche ici à résoudre l'équation :

 x^n + y^n = z^n\;

Ici x, y et z représentent trois polynômes à coefficients complexes. Pour les raisons indiquées au paragraphe précédent, cette question est finalement beaucoup plus facile que celle de Fermat. Elle est résolue en 1847 Par Cauchy après la résolution des cas n = 3,5 et 7 et avant la percée majeur de Ernst Kummer. Le résultat s'énonce de la manière suivante :

  • Soit p, q, r trois polynômes à coefficients complexes et n un entier strictement plus grand que 2, si pn + qn = rn et si p, q et r sont premiers entre eux, alors p, q et r sont trois polynômes constants.

Deux polynômes sont dit premiers entre eux si, et seulement si, les seuls polynômes qui divisent les deux sont les constantes. Cette résolution est plus simple que les trois cas précédents car la complexité calculatoire est moindre. La démarche est néanmoins très similaire. L'ensemble des polynômes à coefficients dans C forment un anneau commutatif unitaire et intègre équipé d'une division euclidienne. Une démarche de nature arithmétique est ainsi possible. Il existe un équivalent de la notion de nombre premier, celle de polynôme irréductible (c'est-à-dire divisible uniquement par lui-même et par 1, à la multiplication par un nombre complexe près) et unitaire (c'est-à-dire de coefficient du terme de plus haut degré égal à 1). Le théorème fondamental de l'arithmétique s'applique, c'est-à-dire qu'il existe une unique décomposition en facteurs premiers, ainsi que l'identité de Bézout ou le lemme d'Euclide. Les démonstrations présentées dans cet article pour les cas n égal à 3 ou 5 sont choisies dans le cadre d'un anneau euclidien.

Cette anneau possède une force qui simplifie largement la démonstration : tout élément du groupe des unités, c'est-à-dire le groupe des éléments inversibles pour la multiplication admet une racine nième. Le fait que les éléments du groupe des unités ne soient pas inversibles présente encore la difficulté à contourner pour les cas n égal 3 et 5.

Cas où n est égal à trois

Le cas est plus complexe, Euler écrit à Goldbach en 1753, lui indiquant qu'il a résolu ce cas. Il publie sa preuve, qui se révèle fausse. Pour sa démonstration, il étudie des nombres dont le cube est de la forme p2 + 3.q2, pour cela il utilise une méthode originale pour l'époque, il considère l'ensemble Z[√3.i], et traite cet ensemble comme un anneau factoriel, c’est-à-dire qu'il suppose l'unicité d'une écriture d'un élément en éléments irréductibles. Ce résultat n'est pas exact, par exemple 4 est à la fois égal à 2 x 2 et aussi à (1 + √3.i)(1 - √3.i). Euler se penche à nouveau sur la question et finit par apporter une preuve satisfaisante.

Trente ans plus tard, Carl Friedrich Gauss publie un traité où, pour la première fois, un anneau d'entiers algébriques est étudié rigoureusement, l'anneau des entiers qui porte maintenant son nom. La logique de l'arithmétique modulaire devient applicable et une démonstration analogue à la première d'Euler est maintenant rigoureuse.

L'anneau d'entier algébrique permettant d'analyser simplement le cas où le paramètre est égal à trois est étudié précisément par Ferdinand Eisenstein . Cet ensemble est égal à Z[j] où j désigne la racine cubique de l'unité ayant une partie imaginaire pure strictement positive. Cet anneau est euclidien donc factoriel, en conséquence, la décomposition en éléments irréductibles aussi appelés nombres premiers d'Eisenstein est bien unique.

L'utilisation d'anneau d'entiers bien choisi est une des techniques majeures du XIXe siècle. Pour la résolution du théorème avec certains paramètres. En revanche, rares sont les anneaux d'entiers euclidiens. D'autres techniques doivent alors être adjointes pour arriver à une certaine généralité.

Dans cet anneau d'entiers appelés entiers d'Eisenstein, une descente infinie est relativement simple à trouver, c'est la méthode utilisée dans la preuve proposée ici.

Théorème de Sophie Germain

La démarche permettant de résoudre le cas où n est égal à trois ne se généralise pas. En effet, l'anneau des entiers algébriques associé aux racines de l'unités n'est plus factoriel. Le raisonnement arithmétique du cas précédent n'est donc plus opérationnel.

Durant la première décennie du XIXe siècle, Sophie Germain apporte une nouvelle idée appelée

Théorème de Sophie Germain : Si n > 2 et 2n + 1 sont des nombres premiers et si x.y.z n'est pas multiple de n, alors le triplet (x, y, z) n'est pas solution de l'équation de Fermat.

La démonstration du cas où le paramètre est égal à trois utilise une démarche de cette nature.

L'étude de la démonstration du théorème est alors divisée en deux cas:

  • Il existe une valeur du triplet multiple de n.
  • Aucun des membres n'est multiple de n.

Sophie Germain résout le premier cas pour toutes les valeurs du paramètre inférieures à cent. Adrien-Marie Legendre pousse la démonstration à toutes les valeurs plus petites que cent-quatre-vingt-dix-sept.

Cas où n est égal à cinq

Dirichlet

Le théorème de Fermat est alors célèbre. Tous les efforts se concentrent sur le cas où le paramètre est égal à cinq. Sophie Germain a résolu le cas où aucune des inconnues n'est multiple de cinq. Cependant, malgré l'implication de nombreux membres de la communauté mathématique, plus de quinze ans s'écoulent sans progrès notable. En 1825 Dirichlet devient immédiatement célèbre, pour un apport significatif. En général, un triplet solution, dans le cas où n est égal à 5, contient un multiple de 2 et un multiple de 5. Dirichlet résolut le cas où la même inconnue est multiples de 2 et de 5.

La démonstration est soumise à l'académie des sciences et Legendre est nommé référé. Il utilise les techniques de Dirichlet, et résout l'autre cas en quelques mois, c’est-à-dire celui où l'inconnue divisible par 2 et l'inconnue divisible par 5 sont différentes.

Les deux démonstrations utilisent des techniques semblables à celle du cas où l'exposant est égal à trois. Elles se fondent elles aussi sur les propriétés de divisibilité d'un anneau d'entiers bien choisi. Cette fois-ci, cependant, à la différence du cas où n est égal à trois, l'anneau considéré est l'anneau des entiers d'un corps quadratique réel (à savoir du corps Q[√5], seul sous-corps quadratique du 5e corps cyclotomique). La structure du groupe des unités devient de ce fait plus complexe. Sa compréhension revient à l'analyse d'une autre équation diophantienne dite de Pell-Fermat, étudiée par Euler. Les travaux de Lagrange sur les fractions continues fournissent les outils nécessaires à l'élucidation de cette structure. Cet anneau prend le nom d'anneau des entiers de Dirichlet, il permet d'établir le lemme clé de la démonstration.

À la différence des travaux de Gauss et d'Eisenstein sur le cas où n est égal à trois, aucune percée théorique majeure n'est réalisée pour la résolution de ce cas. L'anneau associé est toujours euclidien et donc factoriel, les arithmétiques utilisées sont de même nature que les précédentes.

Page générée en 0.166 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise