Les oses (ou monosaccharides) sont les monomères des glucides. Ils ne sont pas hydrolysables. Tout comme les diholosides (ou disaccharides), ils possèdent un pouvoir sucrant, et sont solubles dans l'eau. On les distingue par la longueur de leur chaîne de carbone, comme suit :
Quelques uns ont une saveur agréable sucrée. Cependant il est faux de généraliser cette propriété: l'amidon par exemple, n'a aucun pouvoir sucrant. À l'inverse, d'autres composés n'étant pas des oses, tels la glycine ou l'acide aspartique (duquel dérive l'aspartame, bien connu des personnes surveillant leur ligne) par exemple, possèdent une saveur sucrée. Les oses sont par ailleurs de couleur blanchâtre et sont facilement cristallisables.
Ils peuvent se présenter sous forme cristalline. Les oses sont de deux types :
Cn(H2O)n où n est un nombre entier représentant le nombre de carbones (de 3 à 7 pour les oses naturels) pour de nombreux oses, cependant il ne faut pas généraliser cette propriété. Par exemple, l'acide acétique, qui n'est en aucun cas un ose possède la formule brute CH3COOH soit C2(H2O)2. D'autre part, des dérivés d'ose, comme la glucosamine (qui possède d'autres atomes que le carbone, l'hydrogène et l'oxygène ; en l'occurrence, l'azote) ne présentent pas la propriété énoncée ci dessus valable pour de nombreux oses.
Il est possible de synthétiser à partir d'un ose de n carbones un autre ose de n+1 carbones (par ajout d'un groupement CH-OH en dessous de la fonction aldéhyde ou cétone, à carbone asymétrique) : on effectue des réactions chimiques successives de Kiliani-Fischer (ou synthèse de l'acide cyanhydrique), réaction non stéréospécifique qui peut donc donner, à partir d'un même ose, deux oses différents.
Un ose à n carbones est composé d'une chaîne carbonée non ramifiée, de 3 à 7 carbones, ne comportant que des liaisons simples. Tous les carbones portent une fonction alcool (OH) sauf un qui porte une fonction carbonyle.
Cela détermine donc deux catégories d'oses :
Tous les oses possèdent un pouvoir rotatoire du fait de la présence d'au moins un carbone asymétrique: les oses sont dits chiraux. De fait, s'il y a x atomes de carbone asymétriques, il existe 2x paires d'énantiomères, diastéréoisomères entre elles. Chaque paire a un nom différent et les descripteurs et sont traditionnellement utilisés pour différencier chaque énantiomère.
Deux énantiomères (antipodes optiques) ont les mêmes propriétés à l'exception d'une seule : leur pouvoir rotatoire opposé. La figure 1 représente les deux énantiomères du glucose, la forme -glucose est la forme naturelle.
La projection de Haworth est souvent utilisée pour représenter la forme cyclique des oses.
Il y a hémiacétalisation entre la fonction carbonyle et un OH, dès lors qu'ils sont distants d'au moins 3 carbones. (Ex : entre le carbone 1 et 5 du glucose ou entre le carbone 2 et 5 du fructose, ou encore entre le carbone 1 et 4 du ribose). Le OH né de la cyclisation est appelé OH anomérique ou anomère. Il donne lieu à un nouveau carbone asymétrique (le carbone porteur de la fonction carbonyle : n°1 dans le cas d’un aldose ou n°2 dans le cas d’un cétose) et selon qu'il est placé sous ou sur le plan du cycle il donne naissance à deux isomères alpha (α) ou beta (β) (alpha signifiant en dessous ; et beta au dessus).
Une fois la chaîne carbonée repliée, la proximité de la double liaison de la fonction aldéhyde (ou cétone s’il s'était agit d’un cétose) permet, du fait de sa fragilité, la rupture de la liaison P et de la liaison OH de la fonction alcool (ici du C n°5), permettant l’établissement d’une nouvelle liaison C n°1 et O de l’ancienne fonction alcool du C n°5, fermant ainsi un cycle.
Les oses se cyclisant généralement sous forme furanique (furane) sont :
Les oses se cyclisant généralement sous forme pyranique (pyrane) sont :
En série D, les formes bêta ont toujours leur fonction hémiacétalique (OH en 1, qui n'est pas un alcool) vers le haut sous la représentation de Haworth ; de même les formes alpha portent le OH vers le bas.