Mathématiques en Europe au XVIIe siècle - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Des mathématiques au service des sciences et des techniques

L'idée de nouveau

Francis Bacon

Au XVIIe siècle on passe des spéculations aux inventions. L’époque est habitée par l’idée de faire du nouveau, c’est la naissance des méthodes, à l'image du Discours de la méthode de René Descartes, et qui sont un « art d’inventer». L’objectif est d’obtenir des sciences actives donnant la possibilité d’être « comme maître et possesseur de la nature ». Francis Bacon publia son Novum Organum en 1620, pour un nouvel Organon en référence au travail d’Aristote, projet ambitieux s'il en est. Dans ses écrits, il chercha à persuader ses contemporains de rompre avec les anciens et précisa la méthode baconienne destinée à obtenir des créations nouvelles. Les anciens posaient des grands principes (voir le Traité des catégories d’Aristote) ; la méthode de Bacon est elle fondée sur l’induction : à partir du particulier, il s’agit d’énoncer des axiomes pour revenir au particulier car Bacon cherche à élaborer une science active, une science en spirale très éloignée de ce que présente Aristote dans l’Organum.

Comprendre versus expliquer

En se déplaçant le long de sa directrice, la parabole est toujours vue sous un angle droit.

Si pour Aristote la connaissance scientifique avait pour finalité d’expliquer, de déterminer les causes, il s’agissait désormais de comprendre c’est-à-dire de déterminer comment cela fonctionne.

Par exemple, dans la chute d’un corps il s’agissait pour Aristote de déterminer pourquoi cela tombe, quelle était la cause, alors assimilée au principe selon lequel le grave « rejoint son lieu naturel ». Avec Galilée la question devient comment se fait cette chute. Galilée travaillait aux arsenaux de Venise, il avait en vue des problèmes techniques précis comme la trajectoire d’un boulet de canon ou sa portée maximum. Si l’accélération du mouvement est connue depuis Aristote, Galilée ne se demande plus pourquoi la vitesse augmente mais bien comment elle augmente c’est-à-dire dans quelle proportion. Pour cela il cherche à quantifier, à numériser, en commençant par récuser la distinction antique entre le naturel et l’artificiel.

La naissance du courbe et de l'objet cinématique

Le point mobile engendre une cycloïde droite.

Galilée travaillait sur la trajectoire du boulet de canon tiré, problème qui induit une réflexion au sujet de la courbe et bientôt du courbe.

Dans les mathématiques grecques il est fait état d’environ 12 courbes particulières étudiées et correspondant à des problèmes géométriques : c’est ainsi que les coniques ont été introduites pour résoudre le problème géométrique de la duplication du cube

Au XVIIe siècle, l’étude concerne la courbe en général qui n’est plus uniquement un problème géométrique et devient un problème cinématique, c’est-à-dire où le mouvement est concerné ce qui fait rupture par rapport à la géométrie grecque. Dans ce contexte la parabole devient un objet cinématique et non plus exclusivement statique.

Galilée et l’expérimentation, en rupture avec les anciens

Lorsque Niccolo Fontana Tartaglia étudie la question des artilleurs et dans son ouvrage de 1537 sur la nova sciensa, il cherche à définir l’angle d’inclinaison du canon pour avoir une portée maximum. Cependant il part encore de la classification d’Aristote basée sur la différence entre mouvement violent et mouvement naturel avec la théorie de l'impetus. Un siècle plus tard, Galilée n’hésite pas à mêler mouvement violent et naturel. Il traite également les problèmes des artilleurs tels la portée selon l’inclinaison du canon. Galilée est proche des hommes de l’art comme le puisatier, il propose des tables de tir ou une méthode d’utilisation de la hausse. C’est aussi à cette époque que s’élabore définitivement la notion de fonction. Galilée quitte l’enseignement de l’Université pour se consacrer à ses recherches et, dans une lettre au secrétaire du grand duc de Toscane, il élabore un véritable programme de recherche où la technique est bien présente aux côtés de problèmes plus mathématiques ou purement physiques. Pour lui, il n’est plus question d’étudier seulement la physis c’est-à-dire ce qui est naturel dans la classification d’Aristote mais aussi ce qui est artificiel comme le mouvement violent. Ainsi naissent les problématiques relatives au temps et à l’espace parcouru, à la mesure de la distance. Un de ces prédécesseurs Nicole Oresme, réalisant des travaux sur des thèmes proches, s’intéressa à la vitesse mais pas à la distance. Il est manifeste que Galilée a dans l’idée d’expérimenter car, si le temps et la distance sont accessibles, en reliant les deux on obtient la loi de chute des graves. Galilée vérifie par une expérience que la distance est proportionnelle au carré des temps et s’abstient de réfléchir sur les causes.

René Descartes et l'optique géométrique

René Descartes, d'après Frans Hals.

René Descartes était passionné par les problèmes pratiques, les problèmes d’ingénieurs et se situait également dans une posture de critique des anciens. Il travailla sur les courbes optiques telles l'anaclastique de l’ingénieur Cornier de Rouen. Il s’agissait de déterminer la forme d’un dioptre (verre optique) de telle sorte que les rayons de lumière arrivant de manière parallèle vont se réfracter en un point unique. Dans cette recherche, Descartes trouve la loi de la réfraction et abandonne l’idée de trouver la cause de cette réfraction. Pour cela il résout un problème mathématique de type « inverse des tangentes » (on connaît une propriété des tangentes et on cherche la courbe correspondante) et qui donne la forme de la courbe et donc du verre optique. On sait que deux formes sont possibles : l’hyperbole et l’ellipse. Descartes abandonne à cette occasion la définition des Anciens comme intersection d’un cône et d’un plan pour préférer la définition issue de la manière dont les jardiniers dessinent l’ellipse et l’hyperbole dans leurs jardins. Par suite, Descartes donnera des recommandations pour construire les machines à tailler ces verres. Pour autant, après résolution du problème de l’anaclastique, Descartes traite le problème des ovales que lui se pose. Il s’agit ici de déterminer la forme d’un dioptre de façon que des rayons partent d’un point, rencontrent le verre et se rejoignent en un même point. Descartes trouve une courbe à trois foyers qui va bien au-delà des mathématiques des anciens et aboutit à sa méthode d’inversion des tangentes donnée au livre II. Dans cette recherche, il rend hommage à Kepler, événement rare dans l’œuvre de Descartes.

Christian Huygens ou le « secret des longitudes »

Portrait probable de Huygens, détail de l'Établissement de l'Académie des Sciences et fondation de l'observatoire, 1666.

Un autre problème technique concret fut à la source d’innovation mathématiques et techniques au XVIIe siècle : il s’agit de la détermination des longitudes en mer. Celles-ci étaient alors difficilement accessibles par des observations astronomiques directes ou des procédés hasardeux comme l'observation de la déclinaison magnétique. On savait en théorie qu'une meilleure solution était le recours à des horloges embarquées dont on comparait l’heure avec celle du port de départ, le décalage horaire donnant la longitude. Richelieu avait promis une forte somme d’argent, comme le roi d’Angleterre ou le stathouder de Hollande à qui trouverait le « secret des longitudes » car sa connaissance autorisait la maîtrise des mers et le développement du commerce.

Dans cette recherche, Christian Huygens s'intéresse aux oscillations isochrones (1656 - 1659) et publie ses résultats sur l'isochronisme de l'oscillation cycloïdale. Il applique ce résultat à la conception des horloges : pour que la période des oscillations soit indépendante de l'amplitude, il faut que le mouvement s'effectue sur une cycloïde. Il utilise pour ce faire deux lames métalliques correctement recourbées entre lesquelles il fixe son pendule. Ce système permet de régulariser le mouvement et d’obtenir un battement isochrone du pendule qui n’est pas naturel contrairement à ce croyait Galilée. Il construit sa première horloge en 1657 ; qui ne se décale que de 15 secondes par jour. Il en confie quelques exemplaires à des marins mais leur réalisation pratique n'est pas assez robuste et elles ne résistent pas aux efforts dus aux mouvements des bateaux. Il faudra attendre le siècle suivant avec John Harrison, Ferdinand Berthoud et Julien Le Roy pour que soit enfin résolu le problème des longitudes par le développement des chronomètres de marine.

Page générée en 0.161 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise