En mathématiques, le théorème de la boule chevelue est un résultat de topologie différentielle. Il s'applique à une sphère supportant en chaque point un vecteur, imaginé comme un cheveu, tangent à la surface. Il affirme que la fonction associant à chaque point de la sphère le vecteur admet au moins un point de discontinuité, ce qui revient à dire que la coiffure contient un épi, ou qu'il y a des cheveux nuls, c'est-à-dire de la calvitie.
De manière plus rigoureuse, un champ de vecteurs continu sur une sphère de dimension paire au moins égale à 2 s'annule en au moins un point.
Ce théorème est démontré pour la première fois par Luitzen Egbertus Jan Brouwer en 1912. Cette approche généralise des résultats démontrés par le passé comme le théorème de Jordan ou les travaux de Leopold Kronecker sur les fonctions continûment différentiables de la sphère réelle de dimension n - 1 dans un espace vectoriel de dimension n. Ces résultats, qui intuitivement se comprennent aisément, imposent, pour une démonstration rigoureuse, des développements parfois techniques. Un exemple archétypal de résultat de même nature est le théorème du point fixe de Brouwer. Il énonce que toute application continue d'une boule fermée d'un espace vectoriel euclidien de dimension finie dans elle même admet un point fixe. Comme on le verra plus bas, le théorème de point fixe de Brouwer peut être déduit du théorème de la boule chevelue.
Intuitivement, on peut se représenter une sphère recouverte de cheveux souples et pas frisés, chaque point de la sphère étant la racine d'un cheveu. On considère la projection du cheveu sur le plan tangent à la sphère au point où le cheveu pousse : l'ensemble de ces projections donne une bonne idée d'un champ de vecteurs tangents sur la sphère. On cherche alors à coiffer ces cheveux en les aplatissant sur la surface de la boule, et en évitant les discontinuités: on ne fait pas de raie, on ne permet pas à des cheveux de changer brutalement de direction les uns par rapport aux autres. Le théorème dit qu'il est impossible d'arriver à ce résultat. Quoi qu'on fasse, on va causer la formation d'au moins un épi, c'est-à-dire d'un endroit où un cheveu se dressera.
On veut démontrer qu'il ne peut y avoir de champ de vecteurs tangent et continu, qui ne s'annule jamais sur la sphère ordinaire dans l'espace à trois dimension. On va raisonner par l'absurde et donc supposer qu'il existe sur la sphère un champ de vecteurs tangent, continu et qui ne s'annule jamais.
On dessine sur une brave orange un équateur, un cercle polaire arctique et un cercle polaire antarctique, et on convient de ne voyager le long des parallèles que dans la direction de l'est. On dessine un champ de vecteurs tangent dans les régions arctique et antarctique. Ce champ de vecteurs est à peu près de direction constante, et on peut imaginer que c'est le vent. Si cela gêne le lecteur de penser que le vent est à peu près de direction constante sur une région aussi vaste, il suffit de réduire ces régions par la pensée, et comme le champ de vecteurs représentant le vent est supposé continu, il y aura certainement une zone assez petite pour que le vent y souffle dans une direction fixe, à la précision des mesures près.
On introduit alors un repère mobile, représenté par une figurine en papier : Marinette. Marinette va pouvoir se déplacer le long des parallèles de l'orange, et pour prendre des photos, il a fallu faire une Marinette en papier, collée sur une longue épingle à tête plastique plate. Quand Marinette va vers l'avant, elle prend la direction du premier vecteur de base. Sa main gauche est dans la direction du deuxième vecteur de base, et la direction allant des pieds à la tête de Marinette est celle du troisième vecteur de base, formant ainsi un repère direct.
On voit une orange tatouée d'un équateur et de cercles arctique et antarctique. Le sens de parcours est vers l'est, indiqué par des flèches. | Le vent est en bleu-vert et le cercle arctique en violet. | Marinette : la figurine est en papier collé sur une longue épingle à tête plate, et la longue épingle est montrée pour ceux qui veulent répéter l'"expérience". |
Marinette fait le tour de l'orange en se déplaçant vers l'est le long des parallèles et observe la direction d'où vient le vent. Quand elle fait le tour vers l'est du cercle arctique, le vent tourne autour de sa tête comme suit : elle l'a dans le dos, puis il vient de la gauche, puis dans la figure, de la droite et de nouveau dans le dos. Comme Marinette connaît les conventions des mathématiciens, elle dit que, par rapport à elle, le vent fait un tour dans le sens rétrograde, ce qui est la même chose que faire un tour dans le sens des aiguilles d'une montre.
Quand Marinette fait le tour vers l'est du cercle antarctique, elle a le vent dans le dos, puis il vient de la droite, puis elle l'a dans la figure, puis à gauche et de nouveau dans le dos. Donc, par rapport à Marinette, le vent fait un tour dans le sens direct, ce qui est la même chose que dans le sens contraire des aiguilles d'une montre.
Marinette fait le tour du pôle nord le long du cercle arctique en se déplaçant vers l'est, et dans son repère, le vent tourne une fois autour d'elle dans le sens négatif. | Marinette fait le tour du pôle sud le long du cercle antarctique en se déplaçant vers l'est, et dans son repère, le vent tourne une fois autour d'elle dans le sens positif. |
Pas besoin de faire effectivement le tour le long de l'équateur pour se représenter ce qui va se passer : si le vent souffle partout le long de l'équateur, alors il va faire un certain nombre de tours autour de Marinette quand elle parcourra son chemin. On ne sait pas combien de tours, mais on sait que ce sera un nombre entier, positif, négatif ou nul. On sait aussi que sur tout parallèle où le vent souffle partout, celui-ci fera un nombre entier de tours par rapport à elle. On se dit enfin que le nombre de tours du vent doit être continu par rapport à la latitude du parallèle. Imaginons que sur un parallèle le vent fasse 5 tours, et que juste un peu plus au nord il n'en fasse que 4 ; dans ce cas, soit le vent s'annule quelque part, soit il est discontinu.
Maintenant, avec Marinette, on sait démontrer le théorème de la boule chevelue : si le vent souffle partout sur la terre-orange tout en variant continument, alors son nombre de tours par rapport à un voyageur parcourant vers l'est un parallèle ne dépend pas de la latitude. Mais il fait -1 tour sur un parallèle assez proche du pôle nord et +1 tour sur un parallèle assez proche du pôle sud. Il y a donc une contradiction !